
10/27/2009

1

1

PRIORITY QUEUES
AND HEAPS

Lecture 17
CS2110 Fall 2009

The Bag Interface

A Bag:

interface Bag<E> {
void insert(E obj);
E t t() // t t l t

2

E extract(); //extract some element
boolean isEmpty();

}

Examples: Stack, Queue, PriorityQueue

Stacks and Queues as Lists

• Stack (LIFO) implemented as list
–insert(), extract() from front of list

• Queue (FIFO) implemented as list

3

–insert() on back of list, extract() from
front of list

• All Bag operations are O(1)
55 120 19 16first

last

Priority Queue

• A Bag in which data items are Comparable

• lesser elements (as determined by
compareTo()) have higher priority

4

•extract() returns the element with the
highest priority = least in the compareTo()
ordering

• break ties arbitrarily

Priority Queue Examples
• Scheduling jobs to run on a computer
– default priority = arrival time
– priority can be changed by operator

• Scheduling events to be processed by an

5

• Scheduling events to be processed by an
event handler

– priority = time of occurrence

• Airline check-in
– first class, business class, coach
– FIFO within each class

java.util.PriorityQueue<E>

boolean add(E e) {...} //insert an element (insert)
void clear() {...} //remove all elements
E peek() {...} //return min element without removing

6

//(null if empty)
E poll() {...} //remove min element (extract)

//(null if empty)
int size() {...}

10/27/2009

2

Priority Queues as Lists

• Maintain as unordered list
–insert() puts new element at front – O(1)
–extract() must search the list – O(n)

M i t i d d li t

7

• Maintain as ordered list
–insert() must search the list – O(n)
–extract() gets element at front – O(1)

• In either case, O(n2) to process n elements

Can we do better?

Important Special Case

• Fixed number of priority levels 0,...,p – 1
• FIFO within each level

E ample airline check in

8

• Example: airline check-in

•insert()– insert in appropriate queue – O(1)
•extract()– must find a nonempty queue – O(p)

Heaps

• A heap is a concrete data structure that can
be used to implement priority queues

• Gives better complexity than either ordered or
unordered list implementation:

9

p
–insert(): O(log n)
–extract(): O(log n)

• O(n log n) to process n elements
• Do not confuse with heap memory, where the

Java virtual machine allocates space for
objects – different usage of the word heap

Heaps

• Binary tree with data at each node
• Satisfies the Heap Order Invariant:

Th l t (hi h t i it)

10

• Size of the heap is “fixed” at n. (But can
usually double n if heap fills up)

The least (highest priority)
element of any subtree is found at
the root of that subtree

4

146

Least element in any subtree
is always found at the root
of that subtree

11

Heaps

21 198 35

22 5538 10 20

Note: 19, 20 < 35: we can often find
smaller elements deeper in the tree!

Examples of Heaps

• Ages of people in family tree
– parent is always older than children, but you can have

an uncle who is younger than you

12

• Salaries of employees of a company
– bosses generally make more than subordinates, but a

VP in one subdivision may make less than a Project
Supervisor in a different subdivision

10/27/2009

3

Balanced Heaps

These add two restrictions:

1. Any node of depth < d – 1 has exactly 2
hild h d i h h i h f h

13

children, where d is the height of the tree
– implies that any two maximal paths (path from a root

to a leaf) are of length d or d – 1, and the tree has at
least 2d nodes

• All maximal paths of length d are to the left of
those of length d – 1

Example of a Balanced Heap

4

146

14

d = 3

21 198 35

22 5538 10 20

• Elements of the heap are stored in the array in
order, going across each level from left to
right, top to bottom

Store in an ArrayList or Vector
15

g , p

• The children of the node at array index n are
found at 2n + 1 and 2n + 2

• The parent of node n is found at (n – 1)/2

0

1 2

4

146

Store in an ArrayList or Vector
16

3 4 5 6

7 8 9 10 11

children of node n are found at 2n + 1 and 2n + 2

21 198 35

22 5538 10 20

• Put the new element at the end of the array

• If this violates heap order because it is smaller
than its parent swap it with its parent

insert()
17

than its parent, swap it with its parent

• Continue swapping it up until it finds its rightful
place

• The heap invariant is maintained!

4

146

18

insert()

21 198 35

22 5538 10 20

10/27/2009

4

4

146

19

insert()

21 198 35

22 5538 10 20 5

4

146

20

insert()

21

19

8 35

22 5538 10 20

5

4

6 5

21

insert()

1421

19

8 35

22 5538 10 20

4

6 5

22

insert()

1421

19

8 35

22 5538 10 20

insert()

4

6 5

23

1421

19

8 35

22 5538 10 20 2

insert()

4

6 5

24

1421

19

8

3522 5538 10 20

2

10/27/2009

5

insert()

4

6 2

25

1421

19

8

3522 5538 10 20

5

insert()

2

6 4

26

1421

19

8

3522 5538 10 20

5

insert()

2

6 4

27

1421

19

8

3522 5538 10 20

5

• Time is O(log n), since the tree is balanced

– size of tree is exponential as a function of depth

28

insert()

– depth of tree is logarithmic as a function of size

class PriorityQueue<E> extends java.util.Vector<E> {

public void insert(E obj) {
super.add(obj); //add new element to end of array
rotateUp(size() - 1);

}

insert()29

insert()

private void rotateUp(int index) {
if (index == 0) return;
int parent = (index - 1)/2;
if (elementAt(parent).compareTo(elementAt(index)) <= 0)

return;
swap(index, parent);
rotateUp(parent);

}

• Remove the least element – it is at the root
• This leaves a hole at the root – fill it in with the

last element of the array

30

extract()

• If this violates heap order because the root
element is too big, swap it down with the
smaller of its children

• Continue swapping it down until it finds its
rightful place

• The heap invariant is maintained!

10/27/2009

6

4

56

31

extract()

21 148 35

22 5538 10 20 19

56

4

32

extract()

21 148 35

22 5538 10 20 19

56

4

33

extract()

21 148 35

22 5538 10 20 19

56

194

34

extract()

21 148 35

22 5538 10 20

5

6 19

4

35

extract()

21 148 35

22 5538 10 20

5

6 14

4

36

extract()

21 8 35

22 5538 10 20

19

10/27/2009

7

5

6 14

4

37

extract()

21 8 35

22 5538 10 20

19

6 14

4 5

38

extract()

21 8 35

22 5538 10 20

19

6 14

4 5

39

extract()

21 8 35

22 5538 10 20

19

6 14

204 5

40

extract()

21 8 35

22 5538 10

19

6

1420

4 5

41

extract()

21 8 35

22 5538 10

19

6

148

4 5

42

extract()

21 35

22 5538 10

20 19

10/27/2009

8

6

148

4 5

43

extract()

21 35

22 5538

10

20

19

6

148

4 5

44

extract()

21 35

22 5538

10 19

20

• Time is O(log n), since the tree is balanced

45

extract()

public E extract() {
if (size() == 0) return null;
E temp = elementAt(0);
setElementAt(elementAt(size() - 1), 0);
setSize(size() - 1);
rotateDown(0);
return temp;

46

extract()

}
private void rotateDown(int index) {
int child = 2*(index + 1); //right child
if (child >= size()

|| elementAt(child - 1).compareTo(elementAt(child)) < 0)
child -= 1;

if (child >= size()) return;
if (elementAt(index).compareTo(elementAt(child)) <= 0)

return;
swap(index, child);
rotateDown(child);

}

HeapSort

Given a Comparable[] array of length n,

• Put all n elements into a heap – O(n log n)
R t dl t th i O(l)

47

• Repeatedly get the min – O(n log n)

public static void heapSort(Comparable[] a) {
PriorityQueue<Comparable> pq

= new PriorityQueue<Comparable>();
for (Comparable x : a) { pq.insert(x); }
for (int i = 0; i < a.length; i++) { a[i] = pq.extract(); }

}

PQ Application: Simulation

Example: Probabilistic
model of bank-customer
arrival times and
transaction times, how

t ll d d?

Time-Driven Simulation
• Check at each tick to

see if any event occurs

48

many tellers are needed?
Assume we have a way to
generate random inter-
arrival times
Assume we have a way to
generate transaction times
Can simulate the bank to
get some idea of how long
customers must wait

Event-Driven Simulation
• Advance clock to next

event, skipping
intervening ticks

• This uses a PQ!

