

Abstract Data Types (ADTs)

- A method for achieving abstraction for data structures and algorithms
- ADT = model + operations
- Describes what each operation does, but not how it does it
- An ADT is independent of its implementation
- In Java, an interface corresponds well to an ADT
- The interface describes the operations, but says nothing at all about how they are implemented
- Example: Stack interface/ADT

public interface Stack { public void push(Object x); public Object pop(); public Object peek(); public boolean isEmpty(); public void clear();

Queues & Priority Queues

ADT Queue

- Operations:
 - void add(Object x);
 - Object poll();
 - Object peek();
 - boolean isEmpty(); void clear();
- Where used:
 - Simple job scheduler (e.g., print
 - Wide use within other algorithms
- ADT PriorityQueue
- Operations void insert(Object x);
- Object getMax(); Object peekAtMax();
- boolean isEmpty(); void clear();
- Where used:
- Job scheduler for OS
- Event-driven simulation
- · Can be used for sorting
- · Wide use within other algorithms

A (basic) queue is "first in, first out". A priority queue ranks objects: getMax() returns the "largest" according to the comparator interface.

Sets

ADT Set

Operations:

void insert(Object element); boolean contains(Object element); void remove(Object element); boolean isEmpty(); void clear(); for(Object o: mySet) { ... }

- Where used:
 - Wide use within other algorithms
- Note: no duplicates allowed
 - A "set" with duplicates is sometimes called a *multiset* or *bag*

A set makes no promises about ordering, but you can still iterate over it.

Dictionaries

ADT Dictionary (aka Map)

- Operations:
 - void insert(Object key, Object value);
 - void update(Object key, Object value);
 - Object find(Object key);
 - void remove(Object key);
 - boolean isEmpty(); void clear();
- Think of: key = word; value = definition
- Where used:
 - Symbol tables
 - Wide use within other algorithms

A HashMap is a particular implementation of the Map interface

Data Structure Building Blocks

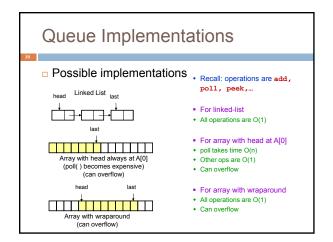
- □ These are *implementation* "building blocks" that are often used to build more-complicated data structures
 - Arrays
 - Linked Lists
 - Singly linked
 - Doubly linked Binary Trees
 - Graphs
 - Adjacency matrix
 - Adjacency list

From interface to implementation

- Given that we want to support some interface, the designer still faces a choice
 - What will be the best way to implement this interface for my expected type of use?
 - Choice of implementation can reflect many considerations
- Major factors we think about
 - Speed for typical use case
 - Storage space required

class ArrayStack implements Stack { private Object[] array; //Array that holds the Stack private int index = 0; //First empty slot in Stack public ArrayStack(int maxSize) { array = new Object[maxSize]; } public void push(Object x) { array(index++] = x; } public Object pep() { return array(index-1); } public Object pep() { return array(index-1); } public boolean isEmpty() { return index == 0; } case time for each operation Question: What can go wrong? What if maxSize is too small?

Linked List Implementation of Stack class ListStack implements Stack { private Node head = null; //Head of list that O(1) worst-case //holds the Stack operation (but constant is public void push(Object x) { head = new Node(x, head); } larger) public Object pop() { Node temp = head; head = head.next; Note that array implementation can return temp.data; overflow, but the public Object peek() { return head.data; } linked list version public boolean isEmpty() { return head == null; } public void clear() { head = null; }

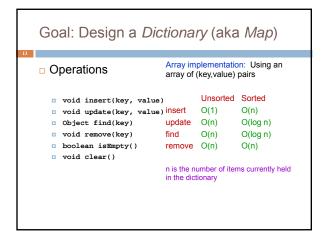


A Queue From 2 Stacks

- Add pushes onto stack A
 - □ Poll pops from stack B
 - □ If B is empty, move all elements from stack A to stack B
 - Some individual operations are costly, but still O(1) time per operations over the long run

Dealing with Overflow

- For array implementations of stacks and queues, use table doubling
- Check for overflow with each insert op
- □ If table will overflow,
 - □ Allocate a new table twice the size
 - Copy everything over
- The operations that cause overflow are expensive, but still constant time per operation over the long run (proof later)



Hashing Idea: compute an array index via a hash function Typical situation: U = all legal identifiers U is the universe of keys □ h: $U \rightarrow [0,...,m-1]$ where m = hash table size Typical hash function: Usually |U| is much bigger h converts each letter to a number, then than m, so collisions are compute a function of these numbers possible (two elements with the same hash code) Best hash functions are highly random This is connected to cryptography □ h should be easy to compute avoid collisions We'll return to this in a few minutes have roughly equal probability for each table position

A Hashing Example Suppose each word below has the • How do we resolve collisions? following hashCode use chaining: each table position jan is the head of a list • for any particular problem, this mar 5 might work terribly ■ apr 2 may 4 • In practice, using a good hash ■ jun 7 function, we can assume each jul aug 7 position is equally likely oct

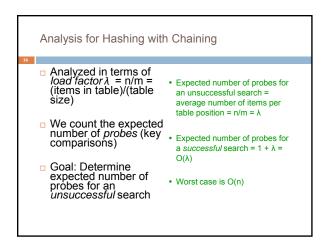


Table Doubling We know each operation takes time $O(\lambda)$ where λ $\lambda = n/m$ So it gets worse as n gets large relative to m Table Doubling: Set a bound for λ (call it λ_0) Whenever λ reaches this bound: Create a new table twice as big Then rehash all the data As before, operations usually take time O(1)But sometimes we copy the whole table

Analysis of	Table Do	ubling	
18			
 Suppose we reach a state with n items in a table of size m and that we have just completed a table doubling 			
		Copying Work	
	Everything has just been copied	n inserte	
	Half were copied previously	n/2 inserts	
	Half of those were copied previously	n/4 Inserts	
	Total work	n+n/2+n/4+=2m	

Analysis of Table Doubling, Cont'd

- Total number of insert operations needed to reach current table = copying work + initial insertions of items = 2n + n = 3n inserts
- Each insert takes expected time $O(\lambda_0)$ or O(1), so total expected time to build entire table is O(n)
- Thus, expected time per operation is O(1)
- · Disadvantages of table
- Worst-case insertion time of O(n) is definitely achieved (but rarely)
- Thus, not appropriate for time critical operations

Concept: "hash" codes

- Definition: a hash code is the output of a function that takes some input and maps it to a pseudo-random number (a *hash*)
 - □ Input could be a big object like a string or an Animal or some other complex thing
 - □ Same input always gives same out
 - Idea is that hashCode for distinct objects will have a very low likelihood of collisions
- Used to create index data structures for finding an object given its hash code

Java Hash Functions

- Most Java classes implement the hashCode() method
- hashCode() returns an int
- □ Java's HashMap class uses h(X) = X.hashCode() mod m
- h(X) in detail:
- int hash = X.hashCode(); int index = (hash & 0x7FFFFFFF) % m;
- What hashCode() returns:
- uses the int value
- Float: . converts to a bit representation and
- treats it as an int
- Short Strings: • 37*previous + value of next character
- Long Strings:
- sample of 8 characters; 39*previous +

hashCode key value next

original hashCode (before mod m)

Allows faster rehashing and (possibly) faster key comparison

- Contract for hashCode() method:
 - □ Whenever it is invoked in the same object, it must return the same result

hashCode() Requirements

- □ Two objects that are equal (in the sense of .equals(...)) must have the same hash code
- □ Two objects that are not equal should return different hash codes, but are not required to do so (i.e., collisions are allowed)

Hashtables in Java

- java.util.HashMap
 - java.util.HashSet · A node in each chain looks like
 - □ java.util.Hashtable this:

 - Use chaining
 - □ Initial (default) size = 101
 - □ Load factor = \lfloor_0 = 0.75
 - □ Uses table doubling (2*previous+1)

Linear & Quadratic Probing

- □These are techniques in Quadratic Probing which all data is stored • Similar to Linear Probing in that directly within the hash table array
- Linear Probing
- □ Probe at h(X), then at
- h(X) + 2
- h(X) + i □ Leads to primary clustering
- Long sequences of filled cells

- data is stored within the table
- Probe at h(X), then at
- h(X)+1
- h(X)+4
- h(X)+9
- h(X)+ j²
- Works well when
- Table size is prime

Universal Hashing

- □In in doubt, choose a hash function at random from a large parameterized family of hash functions (e.g., h(x) = ax + b, where a and b are chosen at random)
 - ■With high probability, it will be just as good as any custom-designed hash function you dream up

Dictionary Implementations

- Ordered Array
 - ■Better than unordered array because Binary Search can be used
 - Unordered Linked List
 - Ordering doesn't help
 - □Hashtables
 - □O(1) expected time for Dictionary operations

Aside: Comparators

- When implementing a comparator interface you normally must
 - Override compareTo() method
 - Override hashCode()
 - Override equals()
- Easy to forget and if you make that mistake your code will be very buggy

hashCode() and equals()

- We mentioned that the hash codes of two equal objects must be equal — this is necessary for hashtable-based data structures such as HashMap and HashSet to work correctly
- oln Java, this means if you override
 Object.equals(), you had better also override
 Object.hashCode()
- □But how???

hashCode() and equals()

```
Class Identifier {
    String name;
    String type;
    String type;

public boolean equals(Object obj) {
    if (obj == null) return false;
        Identifier id;
        try {
        id = (Identifier)obj;
    } catch (ClassCastException oce) {
        return false;
    }
    return name.equals(id.name) && type.equals(id.type);
}
```

hashCode() and equals()

```
class Identifier {
   String name;
   String type;
   public boolean equals(Object obj) {
        if (obj == null) return false;
        Identifier id;
        try {
            id = (Identifier)obj;
        } catch (ClassCastException cce) {
               return false;
        }
        return name.equals(id.name) && type.equals(id.type);
    }
   public int hashCode() {
        return 37 * name.hashCode() + 113 * type.hashCode() + 42;
   }
}
```

hashCode() and equals()

```
class TreeNode {
    TreeNode left, right;
                 public boolean equals(Object obj) {
   if (obj == null || !(obj instanceof TreeNode)) return false;
   TreeNode t = (TreeNode)obj;
   boolean IRq = (left != null)?
   left.equals(t.left) : t.left == null;
   boolean rEq = (right != null)?
    right.equals(t.right) : t.right == null;
   return datum.equals(t.datum) && lEq && rEq;
}
```

```
hashCode() and equals()
class TreeNode {
          TreeNode left, right;
String datum;
         public boolean equals(Object obj) {
   if (obj == null || !(obj instanceof TreeNode)) return false;
   TreeNode t = (TreeNode)obj;
   boolean IEq = (left != null)?
   left.equals(t.left) : t.left == null;
   boolean rEq = (right != null)?
   right.equals(t.right) : t.right == null;
   return datum.equals(t.datum) && lEq && rEq;
}
         public int hashCode() {
  int lHC = (left != null)? left.hashCode() : 298;
  int rHC = (right != null)? right.hashCode() : 377;
  return 37 * datum.hashCode() + 611 * 1HC - 43 * rHC;
```

Professional quality hash codes?

- For large objects we often compute an MD5 hash
 - MD5 is the fifth of a series of standard "message digest" functions
 - They are fast to compute (like an XOR over the bytes of the object)
 - But they also use a cryptographic key: without the key you can't guess what the MD5 hashcode will be

 For example key could be a random number you pick when your program is launched

 - Or it could be a password
- With a password key, an MD5 hash is a "proof of authenticity"
 - □ If object is tampered with, the hashcode will reveal it!