
10/8/2009

1

SORTING AND ASYMPTOTIC
COMPLEXITY

Lecture 13
CS2110 – Fall 2009

InsertionSort
2

//sort a[], an array of int
for (int i = 1; i < a.length; i++) {

int temp = a[i];
int k;
for (k = i; 0 < k && temp < a[k–1]; k––)

a[k] = a[k–1];

Many people sort cards this
way
Invariant: everything to left
of i is already sorted
Works especially well when
input is nearly sorted

Worst-case is O(n2)
Consider reverse-sorted input
Best-case is O(n)
Consider sorted input
Expected case is O(n2)
Expected number of inversions is n(n–1)/4

[] [];
a[k] = temp;

}

SelectionSort

3
To sort an array of size n:

Examine a[0] to a[n–1];
find the smallest one and
swap it with a[0]
Examine a[1] to a[n–1];

This is the other common way
for people to sort cards

Runtime[] [];
find the smallest one and
swap it with a[1]
In general, in step i, examine
a[i] to a[n–1]; find the
smallest one and swap it with
a[i]

Worst-case O(n2)
Best-case O(n2)
Expected-case O(n2)

Divide & Conquer?
4

It often pays to
Break the problem into smaller subproblems,
Solve the subproblems separately, and then
Assemble a final solutionAssemble a final solution

This technique is called divide-and-conquer
Caveat: It won’t help unless the partitioning
and assembly processes are inexpensive

Can we apply this approach to sorting?

MergeSort
5

Quintessential divide-and-conquer algorithm

Divide array into equal parts, sort each part,
then merge

Questions:

Q1: How do we divide array into two equal parts?
A1: Find middle index: a.length/2

Q2: How do we sort the parts?
A2: call MergeSort recursively!

Q3: How do we merge the sorted subarrays?
A3: We have to write some (easy) code

Merging Sorted Arrays A and
B6

Create an array C of size = size of A + size of B
Keep three indices:

i into A
j into B
k into C

Initialize all three indices to 0 (start of each array)
Compare element A[i] with B[j], and move the
smaller element into C[k]
Increment i or j, whichever one we took, and k
When either A or B becomes empty, copy remaining
elements from the other array (B or A, respectively)
into C

10/8/2009

2

Merging Sorted Arrays
7

A

4 7 7 8 9k

i

1 3 4 4 6 7

C = merged array

B

1 3 4 6 8

j

MergeSort Analysis
8

Outline (detailed
code on the website)

Split array into two halves
Recursively sort each half
Merge the two halves

Runtime recurrence
Let T(n) be the time to sort an
array of size n

T(n) = 2T(n/2) + O(n)
T(1) = 1

Merge = combine
two sorted arrays to
make a single sorted
array

Rule: always choose the smallest
item
Time: O(n) where n is the
combined size of the two arrays

Can show by induction that
T(n) is O(n log n)

Alternately, can see that
T(n) is O(n log n) by looking at
tree of recursive calls

MergeSort Notes
9

Asymptotic complexity: O(n log n)
Much faster than O(n2)

Disadvantage
Need extra storage for temporary arrays
In practice, this can be a disadvantage, even
though MergeSort is asymptotically optimal for
sorting
Can do MergeSort in place, but this is very tricky
(and it slows down the algorithm significantly)

Are there good sorting algorithms that do not
use so much extra storage?

Yes: QuickSort

QuickSort
10

Intuitive idea
Given an array A to sort, choose a pivot value
p
Partition A into two subarrays, AX and AY
AX contains only elements ≤ p
AY contains only elements ≥ p

Sort subarrays AX and AY separately
Concatenate (not merge!) sorted AX and AY to
get sorted A

Concatenation is easier than merging – O(1)

11

20 31 24 19 45 56 4 65 5 72 14 99

pivot partition

5 19
14

4

31
72

56

65 45

24

99

204 5 14 19 24 31 45 56 65 72 99

QuickSort QuickSort

4 5 14 19 20 24 31 45 56 65 72 99

concatenate

QuickSort Questions
12

Key problems
How should we choose a
pivot?
How do we partition an
array in place?

Choosing a pivot
Ideal pivot is the median, since this
splits array in half
Computing the median of an
unsorted array is O(n), but
algorithm is quite complicated

Partitioning in place
Can be done in O(n) time
(next slide)

Popular heuristics:
Use first value in array (usually not a
good choice)
Use middle value in array
Use median of first, last, and middle
values in array
Choose a random element

10/8/2009

3

In-Place Partitioning
13

How can we move all the blues to the left of all the reds?

• Keep two indices, LEFT and RIGHT
• Initialize LEFT at start of array and RIGHT at end of array
1 I i t ll l t t l ft f LEFT bl1. Invariant: all elements to left of LEFT are blue

all elements to right of RIGHT are red
• Keep advancing indices until they pass, maintaining invariant

14

Now neither LEFT nor RIGHT can advance and maintain invariant.
We can swap red and blue pointed to by LEFT and RIGHT indices.
After swap, indices can continue to advance until next conflict.

swap

swap

swap

15

Once indices cross, partitioning is done
If you replace blue with ≤ p and red with ≥ pIf you replace blue with ≤ p and red with ≥ p,
this is
exactly what we need for QuickSort partitioning
Notice that after partitioning, array is partially
sorted
Recursive calls on partitioned subarrays will
sort subarrays
No need to copy/move arrays, since we
partitioned in place

QuickSort Analysis
16

Runtime analysis (worst-case)
Partition can work badly, producing this:
Runtime recurrence

T(n) = T(n–1) + n

Thi b l d t h t T() i O(2)

p > p

This can be solved to show worst-case T(n) is O(n2)

Runtime analysis (expected-case)
More complex recurrence
Can solve to show expected T(n) is O(n log n)

Improve constant factor by avoiding
QuickSort on small sets

Switch to InsertionSort (for example) for sets of size, say, δ 9
Definition of small depends on language, machine, etc.

Sorting Algorithm Summary
17

The ones we have
discussed

InsertionSort
SelectionSort
MergeSort
QuickSort

Why so many? Do computer
scientists have some kind of
sorting fetish or what?
Stable sorts: Ins, Sel, Mer
Worst-case O(n log n): Mer, HeaQ

Other sorting
algorithms

HeapSort (will revisit this)
ShellSort (in text)
BubbleSort (nice name)
RadixSort
BinSort
CountingSort

(g) ,

Expected O(n log n):
Mer, Hea, Qui
Best for nearly-sorted sets: Ins
No extra space needed: Ins,
Sel, Hea
Fastest in practice: Qui
Least data movement: Sel

Lower Bound for Comparison Sorting
18

Goal: Determine the
minimum time required
to sort n items
Note: we want worst-

But how can we prove anything
about the best possible
algorithm?Note: we want worst-

case, not best-case time
Best-case doesn’t tell us much;
for example, we know Insertion
Sort takes O(n) time on already-
sorted input
Want to know the worst-case time
for the best possible algorithm

We want to find characteristics that
are common to all sorting
algorithms
Let’s limit attention to comparison-
based algorithms and try to count
number of comparisons

10/8/2009

4

Comparison Trees
19

Comparison-based algorithms
make decisions based on
comparison of data elements
This gives a comparison tree
If the algorithm fails to
terminate for some input, then
the comparison tree is infinite

a[i] < a[j]

yesno

the comparison tree is infinite
The height of the comparison
tree represents the worst-case
number of comparisons for
that algorithm
Can show that any correct
comparison-based algorithm
must make at least n log n
comparisons in the worst case

Lower Bound for Comparison Sorting
20

Say we have a correct comparison-based algorithm

Suppose we want to sort the elements in an array B[]

Assume the elements of B[] are distinct

Any permutation of the elements is initially possible

When done, B[] is sorted

But the algorithm could not have taken the same path in the
comparison tree on different input permutations

Lower Bound for Comparison Sorting
21

How many input permutations are possible? n! ~ 2n log n

For a comparison-based sorting algorithm to be correct, it
must have at least that many leaves in its comparison tree

to have at least n! ~ 2n log n leaves, it must have height at least
n log n (since it is only binary branching, the number of nodes
at most doubles at every depth)

therefore its longest path must be of length at least n log n,
and that it its worst-case running time

java.lang.Comparable<T> Interface
22

public int compareTo(T x);
Returns a negative, zero, or positive value
negative if this is before x
0 if this.equals(x)
positive if this is after x

Many classes implement Comparable
String, Double, Integer, Character, Date,…
If a class implements Comparable, then its compareTo method is
considered to define that class’s natural ordering

Comparison-based sorting methods should work with
Comparable for maximum generality

