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SORTING AND ASYMPTOTIC
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InsertionSort
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//sort a[], an array of int
for (int i = 1; i < a.length; i++) {

int temp = a[i];
int k;
for (k = i; 0 < k && temp < a[k–1]; k––)

a[k] = a[k–1];

Many people sort cards this 
way
Invariant: everything to left 
of i is already sorted
Works especially well when 
input is nearly sorted

Worst-case is O(n2)
Consider reverse-sorted input
Best-case is O(n)
Consider sorted input
Expected case is O(n2)
Expected number of inversions is n(n–1)/4

[ ] [ ];
a[k] = temp;

}

SelectionSort
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To sort an array of size n: 

Examine a[0] to a[n–1]; 
find the smallest one and 
swap it with a[0]
Examine a[1] to a[n–1]; 

This is the other common way 
for people to sort cards

Runtime[ ] [ ];
find the smallest one and 
swap it with a[1]
In general, in step i, examine 
a[i] to a[n–1]; find the 
smallest one and swap it with 
a[i]

Worst-case O(n2)
Best-case O(n2)
Expected-case O(n2)

Divide & Conquer?
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It often pays to
Break the problem into smaller subproblems,
Solve the subproblems separately, and then
Assemble a final solutionAssemble a final solution

This technique is called divide-and-conquer
Caveat: It won’t help unless the partitioning
and assembly processes are inexpensive

Can we apply this approach to sorting?

MergeSort
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Quintessential divide-and-conquer algorithm

Divide array into equal parts, sort each part, 
then merge

Questions:

Q1: How do we divide array into two equal parts?
A1: Find middle index: a.length/2

Q2: How do we sort the parts?
A2: call MergeSort recursively!

Q3: How do we merge the sorted subarrays?
A3: We have to write some (easy) code

Merging Sorted Arrays A and 
B6

Create an array C of size = size of A + size of B
Keep three indices:

i into A
j into B
k into C

Initialize all three indices to 0 (start of each array)
Compare element A[i] with B[j], and move the 
smaller element into C[k]
Increment i or j,  whichever one we took, and k
When either A or B becomes empty, copy remaining 
elements from the other array (B or A, respectively) 
into C
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Merging Sorted Arrays 
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A

4 7 7 8 9k

i

1 3 4 4 6 7

C = merged array

B

1 3 4 6 8

j

MergeSort Analysis
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Outline (detailed 
code on the website)

Split array into two halves
Recursively sort each half
Merge the two halves

Runtime recurrence
Let T(n) be the time to sort an 
array of size n

T(n) = 2T(n/2) + O(n)
T(1) = 1

Merge = combine 
two sorted arrays to 
make a single sorted 
array

Rule: always choose the smallest 
item
Time: O(n) where n is the 
combined size of the two arrays

Can show by induction that 
T(n) is O(n log n)

Alternately, can see that 
T(n) is O(n log n) by looking at 
tree of recursive calls

MergeSort Notes
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Asymptotic complexity: O(n log n)
Much faster than O(n2)

Disadvantage
Need extra storage for temporary arrays
In practice, this can be a disadvantage, even 
though MergeSort is asymptotically optimal for 
sorting
Can do MergeSort in place, but this is very tricky 
(and it slows down the algorithm significantly)

Are there good sorting algorithms that do not 
use so much extra storage?

Yes: QuickSort

QuickSort
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Intuitive idea
Given an array A to sort, choose a pivot value 
p
Partition A into two subarrays, AX and AY
AX contains only elements ≤ p
AY contains only elements ≥ p

Sort subarrays AX and AY separately
Concatenate (not merge!) sorted AX and AY to 
get sorted A

Concatenation is easier than merging – O(1)
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20     31    24 19     45     56 4      65 5       72 14     99

pivot partition
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204      5       14     19 24      31    45     56     65     72     99

QuickSort QuickSort

4      5       14     19     20     24      31    45     56     65     72     99

concatenate

QuickSort Questions
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Key problems
How should we choose a 
pivot?
How do we partition an 
array in place?

Choosing a pivot
Ideal pivot is the median, since this 
splits array in half
Computing the median of an 
unsorted array is O(n), but 
algorithm is quite complicated

Partitioning in place
Can be done in O(n) time 
(next slide)

Popular heuristics:
Use first value in array (usually not a 
good choice)
Use middle value in array
Use median of first, last, and middle 
values in array
Choose a random element
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In-Place Partitioning
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How can we move all the blues to the left of all the reds?

• Keep two indices, LEFT and RIGHT
• Initialize LEFT at start of array and RIGHT at end of array
1 I i t ll l t t l ft f LEFT bl1. Invariant: all elements to left of LEFT are blue

all elements to right of RIGHT are red
• Keep advancing indices until they pass, maintaining invariant
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Now neither LEFT nor RIGHT can advance and maintain invariant.
We can swap red and blue pointed to by LEFT and RIGHT indices.
After swap, indices can continue to advance until next conflict.

swap

swap

swap
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Once indices cross, partitioning is done
If you replace blue with ≤ p and red with ≥ pIf you replace blue with ≤ p and red with ≥ p, 
this is
exactly what we need for QuickSort partitioning
Notice that after partitioning, array is partially 
sorted
Recursive calls on partitioned subarrays will 
sort subarrays
No need to copy/move arrays, since we 
partitioned in place

QuickSort Analysis
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Runtime analysis (worst-case)
Partition can work badly, producing this:
Runtime recurrence

T(n) = T(n–1) + n

Thi b l d t h t T( ) i O( 2)

p > p

This can be solved to show worst-case T(n) is O(n2)

Runtime analysis (expected-case)
More complex recurrence
Can solve to show expected T(n) is O(n log n)

Improve constant factor by avoiding 
QuickSort on small sets

Switch to InsertionSort (for example) for sets of size, say, δ 9
Definition of small depends on language, machine, etc.

Sorting Algorithm Summary
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The ones we have 
discussed

InsertionSort
SelectionSort
MergeSort
QuickSort

Why so many?  Do computer 
scientists have some kind of 
sorting fetish or what?
Stable sorts: Ins, Sel, Mer
Worst-case O(n log n): Mer, HeaQ

Other sorting 
algorithms

HeapSort (will revisit this)
ShellSort (in text)
BubbleSort (nice name)
RadixSort
BinSort
CountingSort

( g ) ,

Expected O(n log n): 
Mer, Hea, Qui
Best for nearly-sorted sets: Ins
No extra space needed: Ins, 
Sel, Hea
Fastest in practice: Qui
Least data movement: Sel

Lower Bound for Comparison Sorting
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Goal: Determine the 
minimum time required
to sort n items
Note: we want worst-

But how can we prove anything 
about the best possible
algorithm?Note: we want worst-

case, not best-case time
Best-case doesn’t tell us much; 
for example, we know Insertion 
Sort takes O(n) time on already-
sorted input
Want to know the worst-case time
for the best possible algorithm

We want to find characteristics that 
are common to all sorting 
algorithms
Let’s limit attention to comparison-
based algorithms and try to count 
number of comparisons
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Comparison Trees
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Comparison-based algorithms 
make decisions based on 
comparison of data elements
This gives a comparison tree
If the algorithm fails to 
terminate for some input, then 
the comparison tree is infinite

a[i] < a[j]

yesno

the comparison tree is infinite
The height of the comparison 
tree represents the worst-case 
number of comparisons for 
that algorithm
Can show that any correct 
comparison-based algorithm 
must make at least n log n 
comparisons in the worst case

Lower Bound for Comparison Sorting
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Say we have a correct comparison-based algorithm

Suppose we want to sort the elements in an array B[]

Assume the elements of B[] are distinct

Any permutation of the elements is initially possible

When done, B[] is sorted

But the algorithm could not have taken the same path in the 
comparison tree on different input permutations

Lower Bound for Comparison Sorting
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How many input permutations are possible?  n! ~ 2n log n

For a comparison-based sorting algorithm to be correct, it 
must have at least that many leaves in its comparison tree

to have at least n! ~ 2n log n leaves, it must have height at least 
n log n (since it is only binary branching, the number of nodes 
at most doubles at every depth)

therefore its longest path must be of length at least n log n, 
and that it its worst-case running time

java.lang.Comparable<T> Interface
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public int compareTo(T x);
Returns a negative, zero, or positive value
negative if this is before x
0 if this.equals(x)
positive if this is after x

Many classes implement Comparable
String, Double, Integer, Character, Date,…
If a class implements Comparable, then its compareTo method is 
considered to define that class’s natural ordering

Comparison-based sorting methods should work with 
Comparable for maximum generality


