3. Find x.

SEARCHING, SORTING, AND ASYMPTOTIC COMPLEXITY

Announcements

Prelim 1

\square Review sessions:

- Thursday, October 15, 7:30-9pm, G01 Uris
\square Topics
- all material up to (but not including) searching and sorting (this week's topics)
- including interfaces \& inheritance
\square Exam conflicts
- A number of people will take P1 on the same day but from 6:00-6:30 (still Uris GO1)
- Email me ASAP if you have a conflict but can't solve it this way!
\square A3 due Friday, October 10, 11:59pm

What Makes a Good Algorithm?

\square Suppose you have two possible algorithms or data structures that basically do the same thing; which is better?
\square Well... what do we mean by better?

- Faster?
- Less space?
- Easier to code?
- Easier to maintain?
- Required for homework?
\square How do we measure time and space for an algorithm?

Sample Problem: Searching

Determine if a sorted array of integers contains a given integer
First solution: Linear Search (check each element)

```
\square static boolean find(int[] a, int item) {
        for (int i = 0; i < a.length; i++) {
            if (a[i] == item) return true;
        }
        return false;
}
```

```
static boolean find(int[] a, int item) {
    for (int x : a) {
        if (x == item) return true;
    }
    return false;
}
```


Sample Problem: Searching

Second solution:
 Binary Search

```
static boolean find (int[] a, int item) {
    int low = 0;
    int high = a.length - 1;
    while (low <= high) {
        int mid = (low + high)/2;
        if (a[mid] < item)
        low = mid + 1;
        else if (a[mid] > item)
            high = mid - 1;
        else return true;
    }
    return false;
}
```


Linear Search vs Binary Search

\square Which one is better?

- Linear Search is easier to program
\square But Binary Search is faster... isn't it?
\square How do we measure to show that one is faster than the other
\square Experiment?
\square Proof?
\square Which inputs do we use?

Simplifying assumption \#1: Use the size of the input rather than the input itself

- For our sample search problem, the input size is $\mathrm{n}+1$ where n is the array size

Simplifying assumption \#2:

Count the number of "basic steps" rather than computing exact times

One Basic Step $=$ One Time Unit

Basic step:

\square input or output of a scalar value
\square accessing the value of a scalar variable, array element, or field of an object
\square assignment to a variable, array element, or field of an object
\square a single arithmetic or logical operation
\square method invocation (not counting argument evaluation and execution of the method body)

For a conditional, count number of basic steps on the branch that is executed

For a loop, count number of basic steps in loop body times the number of iterations

For a method, count number of basic steps in method body (including steps needed to prepare stack-frame)

Runtime vs Number of Basic Steps

\square But is this cheating?
\square The runtime is not the same as the number of basic steps
\square Time per basic step varies depending on $\quad 10,000 \mathrm{n}$ or n^{2} time? computer, on compiler, on details of code...
\square Well...yes, in a way
\square But the number of basic steps is proportional to the actual runtime

Which is better?

- n or n^{2} time?
- 100 n or n^{2} time?

As n gets large, multiplicative constants become less important

Simplifying assumption \#3: Ignore multiplicative constants

Using Big-O to Hide Constants

\square We say $f(n)$ is order of $g(n)$ if $f(n)$ is bounded by a constant times $g(n)$
\square Notation: $f(n)$ is $O(g(n))$

Roughly, $f(n)$ is $O(g(n))$ means that $f(n)$ grows like $g(n)$ or slower, to within a constant factor
\square Example: $\left(\mathrm{n}^{2}+\mathrm{n}\right)$ is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

We know $\mathrm{n} \leq \mathrm{n}^{2}$ for $\mathrm{n} \geq 1$

- So $n^{2}+n \leq 2 n^{2}$ for $n \geq 1$
- So by definition, $\mathrm{n}^{2}+\mathrm{n}$ is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ for $c=2$ and $N=1$
\square "Constant" means fixed and independent of n

Formal definition: $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist constants c and N such that for all $n \geq N, f(n) \leq c \cdot g(n)$

A Graphical View

\square To prove that $f(n)$ is $O(g(n))$:

- Find an N and c such that $f(n) \delta c g(n)$ for all $n \varepsilon N$
- We call the pair (c, N) a witness pair for proving that $f(n)$ is $O(g(n))$

Big-O Examples

Claim: $100 n+\log n$ is $O(n)$
Claim: $\log _{B} n$ is $O\left(\log _{A} n\right)$
We know $\log \mathrm{n} \leq \mathrm{n}$ for $\mathrm{n} \geq 1$

So $100 \mathrm{n}+\log \mathrm{n} \leq 101 \mathrm{n}$
for $\mathrm{n} \geq 1$
So by definition, $100 n+\log n$ is $O(n)$ for $\mathrm{c}=101$ and $\mathrm{N}=1$
since $\log _{B} n$ is $\left(\log _{B} A\right)\left(\log _{A} n\right)$

Question: Which grows faster: n or $\log n$?

Big-O Examples

\square Let $f(n)=3 n^{2}+6 n-7$

- $f(n)$ is $O\left(n^{2}\right)$
- $f(n)$ is $O\left(n^{3}\right)$
- $f(n)$ is $O\left(n^{4}\right)$
- ...
$\square g(n)=4 n \log n+34 n-89$
- $g(n)$ is $O(n \log n)$
- $g(n)$ is $O\left(n^{2}\right)$
$\square \mathrm{h}(\mathrm{n})=20 \cdot 2^{\mathrm{n}}+40 \mathrm{n}$
- $h(n)$ is $O\left(2^{n}\right)$
$\square a(n)=34$
- $a(n)$ is $O(1)$

Only the leading term (the term that grows most rapidly) matters

Problem-Size Examples

\square Suppose we have a computing device that can execute 1000 operations per second; how large a problem can we solve?

	1 second	1 minute	1 hour
n	1000	60,000	$3,600,000$
$n \log n$	140	4893	200,000
n^{2}	31	244	1897
$3 \mathrm{n}^{2}$	18	144	1096
n^{3}	10	39	153
2^{n}	9	15	21

Commonly Seen Time Bounds

$\mathrm{O}(1)$	constant	excellent
$\mathrm{O}(\log \mathrm{n})$	logarithmic	excellent
$\mathrm{O}(\mathrm{n})$	linear	good
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$	n log n	pretty good
$\mathrm{O}\left(\mathrm{n}^{2}\right)$	quadratic	OK
$\mathrm{O}\left(\mathrm{n}^{3}\right)$	cubic	maybe OK
$\mathrm{O}\left(2^{n}\right)$	exponential	too slow

Worst-Case/Expected-Case Bounds

\square We can't possibly determine time bounds for all possible inputs of size n
\square Simplifying assumption \#4: Determine number of steps for either
\square worst-case or
-expected-case

Worst-case

- Determine how much time is needed for the worst possible input of size n

Expected-case

- Determine how much time is needed on average for all inputs of size n

Our Simplifying Assumptions

\square Use the size of the input rather than the input itself -n

Count the number of "basic steps" rather than computing exact times

Multiplicative constants and small inputs ignored (order-of, big-O)
\square Determine number of steps for either

- worst-case
\square expected-case
\square These assumptions allow us to analyze algorithms effectively

Worst-Case Analysis of Searching

```
Linear Search
static boolean find (int[] a, int item)
    {
    for (int i = 0; i < a.length; i++) {
        if (a[i] == item) return true;
    }
    return false;
}
worst-case time =O(n)
    int low = 0;
    int high = a.length - 1;
    while (low <= high) {
        int mid = (low + high)/2;
        if (a[mid] < item)
            low = mid+1;
        else if (a[mid] > item)
            high = mid - 1;
        else return true;
    }
    return false;
}
worst-case time = O(log n)
```


Binary Search

static boolean find (int[] a, int item) \{

Comparison of Algorithms

Linear vs. Binary Search

Comparison of Algorithms

Linear vs. Binary Search

Comparison of Algorithms

Linear vs. Binary Search

- Linear Search $\boldsymbol{\Delta}$ Binary Search

Analysis of Matrix Multiplication

\square Code for multiplying n -by-n matrices A and B :
By convention, matrix problems are measured in terms of n, the number of rows and columns
-Note that the input size is really $2 n^{2}$, not n
-Worst-case time is $\mathrm{O}\left(\mathrm{n}^{3}\right)$
-Expected-case time is also $\mathrm{O}\left(\mathrm{n}^{3}\right)$

$$
\begin{aligned}
& \text { for (i }=0 ; i<n \text {; i++) } \\
& \text { for (} j=0 ; j<n ; j++ \text {) }\{ \\
& \text { C[i][j] = 0; } \\
& \text { for (} k=0 ; k<n ; k++ \text {) } \\
& \text { C[i][j] +=A[i][k]*B[k][j]; } \\
& \text { \} }
\end{aligned}
$$

Remarks

\square Once you get the hang of this, you can quickly zero in on what is relevant for determining asymptotic complexity
\square For example, you can usually ignore everything that is not in the innermost loop. Why?
\square Main difficulty:
\square Determining runtime for recursive programs

Why Bother with Runtime Analysis?

Computers are so fast these days that we can do whatever we want using just simple algorithms and data structures, right?
\square Well...not really - datastructure/algorithm
improvements can be a very big win
\square Scenario:
\square A runs in $\mathrm{n}^{2} \mathrm{msec}$
$\square A^{\prime}$ runs in $\mathrm{n}^{2} / 10 \mathrm{msec}$
$\square B$ runs in $10 \mathrm{n} \log \mathrm{n} \mathrm{msec}$

Problem of size $\mathrm{n}=10^{3}$

- A: $10^{3} \mathrm{sec} \approx 17$ minutes
- $A^{\prime}: 10^{2} \mathrm{sec} \approx 1.7$ minutes
- B: $10^{2} \mathrm{sec} \approx 1.7$ minutes

Problem of size $\mathrm{n}=10^{6}$

- A: $10^{9} \mathrm{sec} \approx 30$ years
- $\mathrm{A}^{\prime}: 10^{8} \mathrm{sec} \approx 3$ years
- B: $2 \cdot 10^{5} \mathrm{sec} \approx 2$ days

1 day $=86,400 \mathrm{sec} \approx 10^{5} \mathrm{sec}$
1,000 days ≈ 3 years

Algorithms for the Human Genome

\square Human genome

$=3.5$ billion nucleotides
$\sim 1 \mathrm{~Gb}$
@1 base-pair
instruction/ / sec
$\square \mathrm{n}^{2} \rightarrow 388445$ years
$\square \mathrm{n} \log \mathrm{n} \rightarrow 30.824$ hours
$\square \mathrm{n} \rightarrow 1$ hour

(suolillu) $\forall N \mathrm{Na}$ jo suled əsea

Limitations of Runtime Analysis

Big-O can hide a very large constant
-Example: selection
\square Example: small problems
\square The specific problem you want to solve may not be the worst case
\square Example: Simplex method for linear programming
\square Your program may not be run often enough to make analysis worthwhile
\square Example: one-shot vs. every day
\square You may be analyzing and improving the wrong part of the program
\square Very common situation
\square Should use profiling tools

Summary

\square Asymptotic complexity
\square Used to measure of time (or space) required by an algorithm

- Measure of the algorithm, not the problem
\square Searching a sorted array
\square Linear search: $O(n)$ worst-case time
\square Binary search: $O(\log n$) worst-case time
\square Matrix operations:
\square Note: $\mathrm{n}=$ number-of-rows = number-of-columns
\square Matrix-vector product: $O\left(n^{2}\right)$ worst-case time
- Matrix-matrix multiplication: $\mathrm{O}\left(\mathrm{n}^{3}\right)$ worst-case time
\square More later with sorting and graph algorithms

