

SEARCHING, SORTING, AND ASYMPTOTIC COMPLEXITY

Lecture 12 CS2110 — Fall 2009

Announcements

□ Prelim 1

- Thursday, October 15, 7:30 - 9pm, G01 Uris
- Topics
 - all material up to (but not including) searching and sorting (this week's topics)
 - including interfaces & inheritance

Exam conflicts

- A number of people will take P1 on the same day but from 6:00-6:30 (still Uris G01)
- Email me ASAP if you have a conflict but can't solve it this way!
- A3 due Friday, October 10, 11:59pm

□ Review sessions:

What Makes a Good Algorithm?

Suppose you have two possible algorithms or data structures that basically do the same thing; which is better?

- □ Well... what do we mean by better?
 - Faster?
 - Less space?
 - Easier to code?
 - Easier to maintain?
 - Required for homework?
- How do we measure time and space for an algorithm?

Sample Problem: Searching

Determine if a *sorted* array of integers contains a given integer First solution: Linear Search (check each element)

```
static boolean find(int[] a, int item) {
   for (int i = 0; i < a.length; i++) {
      if (a[i] == item) return true;
   }
   return false;
}</pre>
```

```
static boolean find(int[] a, int item) {
   for (int x : a) {
      if (x == item) return true;
   }
   return false;
}
```

Sample Problem: Searching

Second solution: Binary Search

```
static boolean find (int[] a, int item) {
   int low = 0;
   int high = a.length - 1;
   while (low <= high) {
      int mid = (low + high)/2;
      if (a[mid] < item)</pre>
         low = mid + 1;
      else if (a[mid] > item)
         high = mid - 1;
      else return true;
   return false;
```

Linear Search vs Binary Search

- □Which one is better?
 - Linear Search is easier to program
 - But Binary Search is faster... isn't it?
- How do we measure to show that one is faster than the other
 - Experiment?
 - □ Proof?
 - □ Which inputs do we use?

- Simplifying assumption #1: Use the *size* of the input rather than the input itself
- For our sample search problem, the input size is n+1 where n is the array size

Simplifying assumption #2: Count the number of "basic steps" rather than computing exact times

One Basic Step = One Time Unit

□Basic step:

- input or output of a scalar value
- accessing the value of a scalar variable, array element, or field of an object
- assignment to a variable, array element, or field of an object
- a single arithmetic or logical operation
- method invocation (not counting argument evaluation and execution of the method body)

For a conditional, count number of basic steps on the branch that is executed

For a loop, count number of basic steps in loop body times the number of iterations

For a method, count number of basic steps in method body (including steps needed to prepare stack-frame)

Runtime vs Number of Basic Steps

■But is this cheating?

- The runtime is not the same as the number of basic steps
- Time per basic step varies depending on computer, on compiler, on details of code...

□Well...yes, in a way

But the number of basic steps is proportional to the actual runtime

Which is better?

- n or n² time?
- 100 n or n² time?
- 10,000 n or n² time?

As n gets large, multiplicative constants become less important

Simplifying assumption #3: Ignore multiplicative constants

Using Big-O to Hide Constants

- □ We say f(n) is order of g(n) if f(n)is bounded by a constant timesg(n)
- \square Notation: f(n) is O(g(n))
- □ Roughly, f(n) is O(g(n)) means that f(n) grows like g(n) or slower, to within a constant factor
- "Constant" means fixed and independent of n

- \square Example: $(n^2 + n)$ is $O(n^2)$
- \square We know $n \le n^2$ for $n \ge 1$
- \square So $n^2 + n \le 2 n^2$ for $n \ge 1$
- So by definition, $n^2 + n$ is $O(n^2)$ for c=2 and N=1

Formal definition: f(n) is O(g(n)) if there exist constants c and N such that for all $n \ge N$, $f(n) \le c \cdot g(n)$

A Graphical View

\square To prove that f(n) is O(g(n)):

- \blacksquare Find an N and c such that $f(n) \delta c g(n)$ for all $n \in N$
- We call the pair (c, N) a witness pair for proving that f(n) is O(g(n))

Big-O Examples

```
Claim: 100 \text{ n} + \log \text{ n} \text{ is O(n)}

We know \log \text{ n} \leq \text{ n} \text{ for n} \geq 1

So 100 \text{ n} + \log \text{ n} \leq 101 \text{ n}

for \text{n} \geq 1

So by definition,

100 \text{ n} + \log \text{ n} \text{ is O(n)}

for \text{c} = 101 \text{ and N} = 1
```

Claim: $log_B n$ is $O(log_A n)$ since $log_B n$ is $(log_B A)(log_A n)$ Question: Which grows faster: n or log n?

Big-O Examples

- □ Let $f(n) = 3n^2 + 6n 7$
 - \Box f(n) is O(n²)
 - \Box f(n) is O(n³)
 - \Box f(n) is O(n⁴)
 - ...
- $g(n) = 4 n \log n + 34 n 89$
 - g(n) is O(n log n)
 - \square g(n) is O(n²)
- $h(n) = 20 \cdot 2^n + 40n$
 - \blacksquare h(n) is O(2ⁿ)
- a(n) = 34
 - □ a(n) is O(1)

Only the *leading* term (the term that grows most rapidly) matters

Problem-Size Examples

Suppose we have a computing device that can execute 1000 operations per second; how large a problem can we solve?

	1 second	1 minute	1 hour
n	1000	60,000	3,600,000
n log n	140	4893	200,000
n ²	31	244	1897
3n ²	18	144	1096
n ³	10	39	153
2 ⁿ	9	15	21

Commonly Seen Time Bounds

O(1)	constant	excellent
O(log n)	logarithmic	excellent
O(n)	linear	good
O(n log n)	n log n	pretty good
O(n ²)	quadratic	OK
O(n ³)	cubic	maybe OK
O(2 ⁿ)	exponential	too slow

Worst-Case/Expected-Case Bounds

We can't possibly determine time bounds for all possible inputs of size n

Simplifying assumption#4: Determine numberof steps for either

- worst-case or
- expected-case

Worst-case

 Determine how much time is needed for the worst possible input of size n

Expected-case

 Determine how much time is needed on average for all inputs of size n

Our Simplifying Assumptions

- \square Use the size of the input rather than the input itself n
- □Count the number of "basic steps" rather than computing exact times
- Multiplicative constants and small inputs ignored (order-of, big-O)
- □ Determine number of steps for either
 - worst-case
 - expected-case
- □ These assumptions allow us to analyze algorithms effectively

Worst-Case Analysis of Searching

Linear Search

```
static boolean find (int[] a, int item)
  {
  for (int i = 0; i < a.length; i++) {
    if (a[i] == item) return true;
  }
  return false;
}</pre>
```

worst-case time = O(n)

Binary Search

```
static boolean find (int[] a, int item) {
  int low = 0;
  int high = a.length - 1;
  while (low <= high) {
    int mid = (low + high)/2;
    if (a[mid] < item)
        low = mid+1;
    else if (a[mid] > item)
        high = mid - 1;
    else return true;
  }
  return false;
}
```

worst-case time = O(log n)

Comparison of Algorithms

■ Linear Search Binary Search

Comparison of Algorithms

■ Linear Search Binary Search

Comparison of Algorithms

■ Linear Search Binary Search

Analysis of Matrix Multiplication

□ Code for multiplying n-by-n matrices A and B:

By convention, matrix problems are measured in terms of n, the number of rows and columns

- ■Note that the input size is really 2n², not n
- ■Worst-case time is O(n³)
- ■Expected-case time is also O(n³)

Remarks

- Once you get the hang of this, you can quickly zero in on what is relevant for determining asymptotic complexity
 - □ For example, you can usually ignore everything that is not in the innermost loop. Why?
- Main difficulty:
 - Determining runtime for recursive programs

Why Bother with Runtime Analysis?

- Computers are so fast these days that we can do whatever we want using just simple algorithms and data structures, right?
- Well...not really datastructure/algorithm improvements can be a very big win
- **□Scenario:**
 - ■A runs in n² msec
 - \square A' runs in $n^2/10$ msec
 - ■B runs in 10 n log n msec

Problem of size n=10³

- A: $10^3 \sec \approx 17 \text{ minutes}$
- A': 10² sec ≈ 1.7 minutes
- B: 10² sec ≈ 1.7 minutes

Problem of size n=10⁶

- A: 10⁹ sec ≈ 30 years
- A': $10^8 \sec \approx 3 \text{ years}$
- B: 2·10⁵ sec ≈ 2 days

1 day =
$$86,400 \text{ sec} \approx 10^5 \text{ sec}$$

1,000 days $\approx 3 \text{ years}$

Algorithms for the Human Genome

- □Human genome
 - = 3.5 billion nucleotides
 - ~ 1 Gb

- □@1 base-pair instruction/∫sec

 - \square n log n \rightarrow 30.824 hours
 - \square n \rightarrow 1 hour

Limitations of Runtime Analysis

- □Big-O can hide a very large constant
 - ■Example: selection
 - ■Example: small problems

- The specific problem you want to solve may not be the worst case
 - Example: Simplex method for linear programming

- Your program may not be run often enough to make analysis worthwhile
 - Example:one-shot vs. every day
 - You may be analyzing and improving the wrong part of the program
- □Very common situation
- □Should use profiling tools

Summary

- Asymptotic complexity
 - Used to measure of time (or space) required by an algorithm
 - Measure of the algorithm, not the problem
- Searching a sorted array
 - Linear search: O(n) worst-case time
 - Binary search: O(log n) worst-case time
- Matrix operations:
 - □ Note: n = number-of-rows = number-of-columns
 - Matrix-vector product: O(n²) worst-case time
 - Matrix-matrix multiplication: O(n³) worst-case time
- More later with sorting and graph algorithms