
9/24/2009

1

INTRODUCTION TO
GRAPHICAL USER INTERFACES

(GUIS)
Lecture 10

CS2110 – Fall 2009

Announcements
2

A3 is up, due Friday, Oct 9

Prelim 1 scheduled for Thursday October 15
We do NOT have any scheduled makeup examWe do NOT have any scheduled makeup exam
If you have a conflict, let us know now; you can take
the exam a little earlier on the same day

Interactive Programs
3

“Classic” view of computer
programs: transform inputs
to outputs, stop

input

output

Event-driven programs:
interactive, long-running

Servers interact with clients
Applications interact with user(s)

user user

program

input
events

output
events

GUI Motivation

Interacting with a program
Program-Driven = Proactive

Statements execute in sequential,
predetermined order

Typically use keyboard or file I/O, but
program determines when that happens

Design...Which to pick?
Program called by
another program?
Program used at
command line?
P i t t ft

4

program determines when that happens

Usually single-threaded

Event-Driven = Reactive
Program waits for user input to activate
certain statements

Typically uses a GUI (Graphical User
Interface)

Often multi-threaded

Program interacts often
with user?
Program used in window
environment?

How does Java do
GUIs?

Java Support for Building GUIs

Java Foundation
Classes

Classes for building GUIs

Major components
awt and swing

Our main focus: Swing
Building blocks of GUIs
Windows &
components

5

awt and swing

Pluggable look-and-feel support

Accessibility API

Java 2D API

Drag-and-drop Support

Internationalization

User interactions
Built upon the AWT
(Abstract Window
Toolkit)
Java event model

Swing versus SWT

Swing builds on AWT
Strives for total
portability
Secretly seems to have

SWT is “new”
Goal is best
performance
Great fit with

6

a grudge against
Windows
Basic architecture is
pretty standard

Windows system
Basic architecture is
pretty standard

Lonnie opted for SWT in A3 but could just as easily have
used Swing. He feels that use of SWT simplified his code.

9/24/2009

2

Java Foundation Classes
7

Pluggable Look-and-Feel Support
Controls look-and-feel for particular windowing environment
E.g., Java, Windows, Mac

Accessibility API
Supports assistive technologies such as screen readers and Braille

Java 2D
Drawing
Includes rectangles, lines, circles, images, ...

Drag-and-drop
Support for drag and drop between Java application and a native application

Internationalization
Support for other languages

GUI Statics and GUI Dynamics

Components
buttons, labels, lists, sliders,
menus, ...

Events

button-press, mouse-click, key-
press, ...

8

Statics: what’s drawn on the
screen Dynamics: user interactions

,

Containers: components that
contain other components

frames, panels, dialog boxes, ...

Layout managers: control
placement and sizing of
components

p ,

Listeners: an object that responds
to an event

Helper classes

Graphics, Color, Font,
FontMetrics, Dimension, ...

Creating a Window in SWT
9

import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;

public class HelloWorld {
public static void main(String[] args) {

//create the window
Display display = new Display();
Shell shell = new Shell(display);
Label label = new Label(shell, SWT.NONE);

label.setText("Basic Test!");
label.pack();
shell.pack();
shell.open();

// quit Java after closing the window
while (!shell.isDisposed()) {

if (!display.readAndDispatch())
display.sleep();

}
display.dispose ();

}
}

Creating a Window in Swing
10

import javax.swing.*;

public class Basic1 {
public static void main(String[] args) {

//create the window
JFrame f = new JFrame("Basic Test!");JFrame f = new JFrame(Basic Test!);
//quit Java after closing the window
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(200, 200); //set size in pixels
f.setVisible(true); //show the window

}
}

Creating a Window Using a Constructor
11

import javax.swing.*;

public class Basic2 extends JFrame {

public static void main(String[] args) {
new Basic2();

}}

public Basic2() {
setTitle("Basic Test2!"); //set the title
//quit Java after closing the window
setDefaultCloseOperation(EXIT_ON_CLOSE);
setSize(200, 200); //set size in pixels
setVisible(true); //show the window

}
}

A More Extensive Example
12 import javax.swing.*;

import java.awt.*;
import java.awt.event.*;

public class Intro extends JFrame {

private int count = 0;
private JButton myButton = new JButton("Push Me!");
private JLabel label = new JLabel("Count: " + count);

public Intro() {
setDefaultCloseOperation(EXIT_ON_CLOSE);
setLayout(new FlowLayout(FlowLayout.LEFT)); //set layout manager
add(myButton); //add components
add(label);add(label);

myButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

count++;
label.setText("Count: " + count);

}
});
pack();
setVisible(true);

}

public static void main(String[] args) {
try {

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
} catch (Exception exc) {}
new Intro();

}
}

9/24/2009

3

GUI Statics
13

Determine which components you want
Choose a top-level container in which to put the
components (JFrame is often a good choice)components (JFrame is often a good choice)
Choose a layout manager to determine how
components are arranged
Place the components

Components = What You See
14

Visual part of an interface
Represents something with position and size
Can be painted on screen and can receive events
B tt l b l li t lid Buttons, labels, lists, sliders, menus, ...

Some windows have hidden components that
become visible only when the user takes some action

Component Examples
15

import javax.swing.*;
import java.awt.*;

public class ComponentExamples extends JFrame {

public ComponentExamples() {
setLayout(new FlowLayout(FlowLayout.LEFT));
add(new JButton("Button"));
add(new JLabel("Label"));
add(new JComboBox(new String[] { "A" "B" "C" }));add(new JComboBox(new String[] { A , B , C }));
add(new JCheckBox("JCheckBox"));
add(new JSlider(0, 100));
add(new JColorChooser());

setDefaultCloseOperation(EXIT_ON_CLOSE);
pack();
setVisible(true);

}

public static void main(String[] args) {
try {

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
} catch (Exception exc) {}
new ComponentExamples();

}
}

More Components
16

JFileChooser: allows choosing a file
JLabel: a simple text label
JTextArea: editable text
JTextField editable text (one line)JTextField: editable text (one line)
JScrollBar: a scrollbar
JPopupMenu: a pop-up menu
JProgressBar: a progress bar
Lots more!

Containers
17

A container is a component
that

Can hold other components
Has a layout manager

Heavyweight vs. lightweight
A heavyweight component

There are three basic top-level
containers
JWindow: top-level window with no
border
JFrame: top-level window with borderA heavyweight component

interacts directly with the host
system
JWindow, JFrame, and JDialog
are heavyweight
Except for these top-level
containers, Swing components
are almost all lightweight

JPanel is lightweight

JFrame: top level window with border
and (optional) menu bar
JDialog: used for dialog windows

Another important container
JPanel: used mostly to organize
objects within other containers

A Component Tree
18

JFrame

JPanel

JPanel JPanel

JPanel JPanel

JPanel JPanel

JComboBox (mi)
JComboBox (km)

JTextField (2000)

JSlider
JTextField (3226)

JSlider

JPanelJPanel

9/24/2009

4

Layout Managers
19

A layout manager controls placement
and sizing of components in a
container

If you do not specify a layout
manager, the container will use a
default:

JPanel default = FlowLayout

General syntax
container.setLayout(new LayoutMan());

Examples:

JPanel p1 =
JPanel default FlowLayout

JFrame default = BorderLayout

Five common layout managers:
BorderLayout, BoxLayout,
FlowLayout, GridBagLayout,
GridLayout

new JPanel(new BorderLayout());

JPanel p2 = new JPanel();

p2.setLayout(new BorderLayout());

Some Example Layout Managers
20

FlowLayout
Components placed from left to right in
order added
When a row is filled, a new row is
started
Lines can be centered, left-justified or
right-justified (see FlowLayout

BorderLayout
Divides window into five areas: North,
South, East, West, Center

Adding components
FlowLayout and GridLayout use
container add(component)right-justified (see FlowLayout

constructor)
See also BoxLayout

GridLayout
Components are placed in grid pattern
number of rows & columns specified in
constructor
Grid is filled left-to-right, then top-to-
bottom

container.add(component)

BorderLayout uses
container.add(component, index)
where index is one of
BorderLayout.NORTH

BorderLayout.SOUTH

BorderLayout.EAST

BorderLayout.WEST
BorderLayout.CENTER

FlowLayout Example

21 import javax.swing.*;
import java.awt.*;

public class Statics1 {
public static void main(String[] args) {

new S1GUI();
}

}

class S1GUI {
private JFrame f;

public S1GUI() {
f = new JFrame("Statics1");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(500, 200);
f.setLayout(new FlowLayout(FlowLayout.LEFT));
for (int b = 1; b < 9; b++)

f.add(new JButton("Button " + b));
f.setVisible(true);

}
}

BorderLayout Example

22 import javax.swing.*;
import java.awt.*;

public class Statics2 {
public static void main(String[] args) { new S2GUI(); }

}

class ColoredJPanel extends JPanel {
Color color;
ColoredJPanel(Color color) {

this.color = color;
}
public void paintComponent(Graphics g) {

g setColor(color);g.setColor(color);
g.fillRect(0, 0, 400, 400);

}
}

class S2GUI extends JFrame {
public S2GUI() {

setTitle("Statics2");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setSize(400, 400);
add(new ColoredJPanel(Color.RED), BorderLayout.NORTH);
add(new ColoredJPanel(Color.GREEN), BorderLayout.SOUTH);
add(new ColoredJPanel(Color.BLUE), BorderLayout.WEST);
add(new ColoredJPanel(Color.YELLOW), BorderLayout.EAST);
add(new ColoredJPanel(Color.BLACK), BorderLayout.CENTER);
setVisible(true);

}
}

GridLayout Example

23
import javax.swing.*;
import java.awt.*;

public class Statics3 {
public static void main(String[] args) { new S3GUI(); }

}

class S3GUI extends JFrame {
static final int DIM = 25;
static final int SIZE = 12;
static final int GAP = 1;

public S3GUI() {
setTitle("Statics3");
setDefaultCloseOperation(EXIT_ON_CLOSE);
setLayout(new GridLayout(DIM DIM GAP GAP));setLayout(new GridLayout(DIM, DIM, GAP, GAP));
for (int i = 0; i < DIM * DIM; i++) add(new MyPanel());
pack();
setVisible(true);

}

class MyPanel extends JPanel {
MyPanel() { setPreferredSize(new Dimension(SIZE, SIZE)); }
public void paintComponent(Graphics g) {

float gradient =
1f - ((float)Math.abs(getX() - getY()))/(float)((SIZE + GAP) * DIM);

g.setColor(new Color(0f, 0f, gradient));
g.fillRect(0, 0, getWidth(), getHeight());

}
}

}

More Layout Managers
24

CardLayout
Tabbed index card look from
Windows

G idB L t

Custom
Can define your own layout
manager
But best to try Java's layout
managers first...

GridBagLayout
Most versatile, but complicated

Null
No layout manager
Programmer must specify absolute
locations
Provides great control, but can be
dangerous because of platform
dependency

9/24/2009

5

AWT and Swing
25

AWT
Initial GUI toolkit for Java

Provided a “Java” look and feel
Basic API: java.awt.*

Swing
More recent (since Java 1.2) GUI
toolkit
Added functionality (new
components)
Supports look and feel for various
platforms (Windows, Mac)
Basic API: javax.swing.*

Did Swing replaced AWT?
Not quite: both use the AWT event
model

Code Examples
26

Intro.java
Button & counter

Basic1.java
Create a window

Basic2.java

ComponentExamples.java
Sample components
Statics1.java
FlowLayout example
Statics2.java
BorderLa o t examplej

Create a window using a constructor

Calculator.java
Shows use of JOptionPane to
produce standard dialogs

BorderLayout example
Statics3.java
GridLayout example
LayoutDemo.java
Multiple layouts

