

Tree Terminology
M is the root of this tree
G is the root of the left subtree of \mathbf{M}
B, H, J, N, and S are leaves
\mathbf{N} is the left child of $\mathbf{P} ; \mathbf{S}$ is the right child
\mathbf{P} is the parent of \mathbf{N}
M and G are ancestors of D
\mathbf{P}, N, and S are descendants of W
Node \mathbf{J} is at depth 2 (i.e., depth = length of path from root $=$ number of edges)
Node W is at height 2 (i.e., height $=$ length of longest path to a leaf)
A collection of several trees is called
a ...?

Tree Overview

Tree: recursive data structure (similar to list)

- Each cell may have zero or more successors (children)
- Each cell has exactly one predecessor (parent) excep the root, which has none
- All cells are reachable from root
Binary tree: tree in which each cell can have at most two children: a left child and a right child

Class for Binary Tree Cells

```
class TreeCell<T> {
    private T datum;
    private TreeCell<T> left, right;
    public TreeCell(T x) { datum = x; }
    public TreeCell(T x, TreeCell<T> lft
        datum = x; TreeCell<T> rgt) {
        left = lft;
        right = rgt;
    }
    more methods: getDatum, setDatum,
    getLeft, setLeft, getRight, setRight
}
```

... new TreeCell<String>("hello") ...

Applications of Trees

\square Most languages (natural and computer) have a recursive, hierarchical structure
\square This structure is implicit in ordinary textual representation
\square Recursive structure can be made explicit by representing sentences in the language as trees: Abstract Syntax Trees (ASTs)
\square ASTs are easier to optimize, generate code from, etc. than textual representation
\square A parser converts textual representations to AST

Searching in a Binary Tree

public static boolean treeSearch(Object x,
TreeCell node) \{
if (node == null) return false;
if (node.datum.equals(x)) return true; return treeSearch(x, node.left) ||
treeSearch(x , node.right);
\}
Analog of linear search in lists: given tree and an object, find out if object is stored in tree Easy to write recursively, harder to write iteratively

Binary Search Tree (BST)

\square If the tree data are ordered - in any subtree, - All left descendents of node come before node

- All right descendents of node come offer node

This makes it much faster to search
public static boolean treeSearch (Object x, TreeCell node) \{ if (node $==$ null) return false;
if (node.datum.equals(x)) return true;
if (node.datum.compareTo(x) > 0)
return treeSearch(x, node.left);
else return treeSearch(x, node.right);
\}

Building a BST

\square To insert a new item

- Pretend to look for the item
- Put the new node in the place where you fall off the tree

This can be done using either recursion or iteration

Example

- Tree uses alphabetical order
- Months appear for insertion in colendar order

\square A BST makes searches very
fast, unless...
- Nodes are inserted in alphabetical order
- In this case, we're basically building a linked list (with some
extra wasted space for the extra wasted space for the used)
\square BST works great if data arrives in random order

Printing Contents of BST

\square Because of the ordering rules for a BST, it's easy to print the items in alphabetical order \square Recursively print everything in the left subtree \square Print the node \square Recursively print everything in the right subtree	```/** * alphabetical order. */ public void show () { show(root); System.out.println(); } private static void show(TreeNode node) { if (node == null) return; show(node.lchild); System.out.print(node.datum + " "); show(node.rchild); }```

Tree Traversals

Things to Think About
\square What if we want to delete data from a BST?
\square A BST works great as long as it's balanced - How can we keep it balanced?


```
W/determine if a node is a leaf
public static boolean isLeaf(TreeCell node) {
    return (node != null) && (node.left == null)
    } && (node.right == null);
}
//compute height of tree using postorder traversal
public static int height(TreeCell node) {
    blic static int height(TreeCell node) {
    if (node == null) return -1;
    return 1 + Math.max(height(node.left),
        height(node.right));
}
//compute number of nodes using postorder traversal
public static int nNodes(TreeCell node) {
    return 1 + nNodes(node.left) + nNodes(node.right);
```

\}

Some Useful Methods

Suffix Trees

- Given a string s, a suffix tree for s is a tree such that
- each edge has a unique label, which is a nonnull substring of s
- any two edges out of the same node have labels beginning with different characters
- the labels along any path from the root to a leaf concatenate together to give a suffix of s
- all suffixes are represented by some path
- the leaf of the path is labeled with the index of the first character of the suffix in s
- Suffix trees can be constructed in linear time

Huffman Trees

Fixed length encoding
$197 * 2+63^{*} 2+40 * 2+26 * 2=652$

Huffman encoding
$197^{*} 1+63^{*} 2+40 * 3+26^{*} 3=521$

Huffman Compression of "Ulysses"

```
#24250010000 3 3110
M,
%N
*)
```



```
\7% 68 00110111 15 111010101001111
<<
%
origina size 11904320
```

Tree Summary
\square A tree is a recursive data structure
\square Each cell has 0 or more successors (children)
\square Each cell except the root has at exactly one predecessor (parent)
\square All cells are reachable from the root
\square A cell with no children is called a leaf
\square Special case: binary tree
\square Binary tree cells have a left and a right child
\square Either or both children can be null
\square Trees are useful for exposing the recursive structure of natural language and computer programs

