

Tree Terminology M is the root of this tree G is the root of the left subtree of M B, H, J, N, and S are leaves N is the left child of P; S is the right child P is the parent of N M and S are descendants of W Node J is at depth 2 (i.e., depth = length of path from root = number of edges) Node W is at height 2 (i.e., height = length of longest path to a leaf) A collection of several trees is called a ...?

Applications of Trees Most languages (natural and computer) have a recursive, hierarchical structure This structure is implicit in ordinary textual representation Recursive structure can be made explicit by representing sentences in the language as trees: Abstract Syntax Trees (ASTs) ASTs are easier to optimize, generate code from, etc. than textual representation A parser converts textual representations to AST

 Useful Facts about Binary Trees

2d = maximum number of nodes at depth d

If height of tree is h

Maximum number of nodes in tree = h

1 Maximum number of nodes in tree = 200 + 21 + ... + 280 = 200 + 1 = 1

Complete binary tree

All levels of tree down to a certain depth are completely filled

All levels of tree down to a certain depth are completely filled

4 Height 2, maximum number of nodes

Tree with Parent Pointers

In some applications, it is useful to have trees in which nodes can reference their parents

Analog of doubly-linked lists

Things to Think About

What if we want to delete data from a BST?

A BST works great as long as it's balanced
How can we keep it balanced?

Suffix Trees

- 19
- Given a string s, a suffix tree for s is a tree such that
- each edge has a unique label, which is a nonnull substring of s
- any two edges out of the same node have labels beginning with different characters
- the labels along any path from the root to a leaf concatenate together to give a suffix of s
- all suffixes are represented by some path
- the leaf of the path is labeled with the index of the first character of the suffix in s
- Suffix trees can be constructed in linear time

Suffix Trees

- 21
 - Useful in string matching algorithms (e.g., longest common substring of 2 strings)
 - □ Most algorithms linear time
 - \square Used in genomics (human genome is \sim 4GB)

Huffman Trees

0 1 0 1 e t a s 197 63 40 26

Fixed length encoding $197^2 + 63^2 + 40^2 + 26^2 = 652$

Huffman encoding 197*1 + 63*2 + 40*3 + 26*3 = 521

Huffman Compression of "Ulysses"

23

- 1' 242125 00100000 3 110 1e' 139496 01100101 3 000 1t' 95660 01110100 4 1010
- e'e' 139496 01100101 3 000
 e't' 95660 01110100 4 1010
 e'a' 89651 01100001 4 1000
 e'o' 88884 01101111 4 011
- at 76505 01101001 4 0100 as 73186 01110011 4 0011 ab 68625 01101000 5 11111 br 68320 01110010 5 11111 ar 68320 01110100 5 10111
- o'g' 26201 01100111 6 101100 o'l' 25248 01100110 6 101100 o'l' 21361 00101110 6 011010 o'p' 20661 01110000 6 011001
- 급임 3 00100110 18 01100000010001010 다양 3 00100101 19 01100000010001011 다양 2 00101011 19 011000000010001011 priginal size 11904320

compressed size 6822151 42.7% compression

23

BSP Trees

24

- BSP = Binary Space Partition
- □ Used to render 3D images composed of polygons
- □ Each node n has one polygon p as data
- $\hfill\Box$ Right subtree of \hfill contains all polygons on the other side of \hfill
- Order of traversal determines occlusion!

Tree Summary

- □ A tree is a recursive data structure
 - Each cell has 0 or more successors (children)
 - Each cell except the root has at exactly one predecessor (parent)
 - □ All cells are reachable from the root
 - A cell with no children is called a leaf
- □ Special case: binary tree
 - Binary tree cells have a left and a right child
 - □ Either or both children can be null
- Trees are useful for exposing the recursive structure of natural language and computer programs