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Recursion Overview
4

Recursion is a powerful technique for specifying 
functions, sets, and programs

Example recursively-defined functions and programs
factorialfactorial 
combinations
exponentiation (raising to an integer power)

Example recursively-defined sets
grammars 
expressions
data structures (lists, trees, ...)

The Factorial Function  (n!)
5

Define n! = n·(n−1)·(n−2)···3·2·1     read: “n factorial”
E.g., 3! = 3·2·1 = 6

By convention, 0! = 1
The function int → int that gives n! on input n is called 
the factorial function

The Factorial Function  (n!)
6

n! is the number of permutations of n distinct objects
There is just one permutation of one object.  1! = 1
There are two permutations of two objects: 2! = 2There are two permutations of two objects:  2! = 2

1 2    2 1
There are six permutations of three objects:  3! = 6

1 2 3     1 3 2     2 1 3     2 3 1     3 1 2     3 2 1

If n > 0,  n! = n·(n − 1)!
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Permutations of
7

Permutations of 
non-orange blocks

Total number = 4·3! = 4·6 = 24:  4!

Each permutation of the three non-
orange blocks gives four permutations 
when the orange block is included

Observation
8

One way to think about the task of permuting 
the four colored blocks was to start by 
computing all permutations of three blocks, 
then finding all ways to add a fourth block

And this “explains” why the number of 
permutations turns out to be 4! 
Can generalize to prove that the number of 
permutations of n blocks is n!

A Recursive Program
9

0! = 1

n! = n·(n−1)!,  n > 0
6

Execution of fact(4)

fact(4)

fact(3)

24

static int fact(int n) {
if (n = = 0)

return 1;
else

return n*fact(n-1);
}

1

1

2

fact(1)

fact(3)

fact(0)

fact(2)

General Approach to Writing 
Recursive Functions

10

1. Try to find a parameter, say n, such that the 
solution for n can be obtained by combining 
solutions to the same problem using smaller 
values of n (e.g., (n-1) in our factorial example)

2. Find base case(s) – small values of n for which 
you can just write down the solution (e.g., 0! = 1)

3. Verify that, for any valid value of n, applying the 
reduction of step 1 repeatedly will ultimately hit 
one of the base cases    

A cautionary note
11

Keep in mind that each instance of your 
recursive function has its own local variables
Also, remember that “higher” instances are 
waiting while “lower” instances run

Not such a good idea to touch global variables 
from within recursive functions

Legal… but a common source of errors
Must have a really clear mental picture of how 
recursion is performed to get this right!

The Fibonacci Function
12

Mathematical definition:
fib(0) = 0
fib(1) = 1
fib(n) = fib(n − 1) + fib(n − 2),  n ≥ 2

two base cases!

Fibonacci sequence:  0, 1, 1, 2, 3, 5, 8, 13, 
…

static int fib(int n) {
if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

} 

Fibonacci (Leonardo 
Pisano) 1170−1240?

Statue in Pisa, Italy
Giovanni Paganucci

1863
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Recursive Execution
13

static int fib(int n) {
if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

} 

fib(4)E ti f fib(4) fib(4)

fib(3) fib(2)

fib(1) fib(0)

fib(2) fib(1) fib(1) fib(0)

Execution of fib(4):

One thing to notice
14

This way of computing the Fibonacci function 
is elegant, but inefficient
It “recomputes” answers again and again!
To improve speed need to save fib(4)To improve speed, need to save 
known answers in a table!
Called a cache

fib(4)

fib(3) fib(2)

fib(1) fib(0)

fib(2) fib(1) fib(1) fib(0)

Adding caching to our solution

Before: After
15

static int fib(int n) {
if (n == 0)

return 0;
else if (n == 1)

ArrayList<boolean> known = new ArrayList<boolean>;
ArrayList<int> cached = new ArrayList<cached>;
static int fib(int n) {

int v;
if(known[n])

return 1;
else

return fib(n-1) + fib(n-2);
} 

return cached[n];
if (n == 0)

v = 0;
else if (n == 1)

v = 1;
else

v = fib(n-1) + fib(n-2);
known[n] = true;
cached[n] = v;
return v;

} 

Notice the development process
16

We started with the idea of recursion
Created a very simple recursive procedure
Noticed it will be slow, because it wastefully 
recomputes the same thing again and againrecomputes the same thing again and again
So made it a bit more complex but gained a lot 
of speed in doing so

This is a common software engineering pattern

Combinations 
(a.k.a. Binomial Coefficients)

17

How many ways can you choose r items from 
a set of n distinct elements?   (  )  “n choose r”
(  ) = number of 2-element subsets of {A,B,C,D,E}

2 l t b t t i i A ( )4

n
r

5
2

2-element subsets containing A: 
{A,B}, {A,C}, {A,D}, {A,E}

2-element subsets not containing A: {B,C},{B,D},{B,E},{C,D},{C,E},{D,E}

Therefore,        =        +
… in perfect form to write a recursive function!

(  )1

(  )4
2

(  )4
1 (  )4

2(  )5
2

Combinations
18

= +         ,  n > r > 0

= 1
= 1

(  )n
r (    )n−1

r (    )n−1
r−1

(  )n
n

(  )n
0 Can also show that               =(  )n

r
n!

r!(n−r)!

(  )0
0

(  )1
1(  )1

0

(  )2
2(  )2

1(  )2
0

(  )3
3(  )3

2(  )3
1(  )3

0

(  )4
4(  )4

3(  )4
2(  )4

1(  )4
0

1

1      1

1      2      1

1      3      3      1

1      4      6      4      1

=

Pascal’s
triangle
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Binomial Coefficients
19

Combinations are also called binomial coefficients
because they appear as coefficients in the expansion

of the binomial power (x+y)n :

19

(x + y)n =        xn +       xn−1y +       xn−2y2 + ··· +        yn

=  ∑ xn−iyi(  )n
i

(  )n
n(  )n

0 (  )n
1 (  )n

2

n

i = 0

Combinations Have Two Base Cases
20

Two base cases

= +         ,  n > r > 0

= 1
= 1

(  )n
r (    )n−1

r (    )n−1
r−1

(  )n
n

(  )n
0

Coming up with right base cases can be 
tricky!
General idea:

Determine argument values for which 
recursive case does not apply
Introduce a base case for each one of these

Recursive Program for 
Combinations

21

= +         ,  n > r > 0

= 1
= 1

(  )n
r (    )n−1

r (    )n−1
r−1

(  )n
n

(  )n
0

static int combs(int n, int r) {   //assume n>=r>=0
if (r == 0 || r == n) return 1; //base cases
else return combs(n-1,r) + combs(n-1,r-1);

}

Exercise for the reader (you!)
22

Modify our recursive program so that it caches 
results
Same idea as for our caching version of the 
fibonacci series

Question to ponder: When is it worthwhile to 
adding caching to a recursive function?

Certainly not always…
Must think about tradeoffs: space to maintain the 
cached results vs speedup obtained by having them

Positive Integer Powers
23

an = a·a·a···a (n times)

Alternate description:
a0 = 1a  1
an+1 = a·an

static int power(int a, int n) {
if (n == 0) return 1;
else return a*power(a,n-1);

}

A Smarter Version
24

Power computation:
a0 = 1
If n is nonzero and even, an = (an/2)2

If n is odd, an = a·(an/2)2

Java note: If x and y are integers, “x/y” returns the integer part of the 
quotient

Example:Example: 
a5 =  a·(a5/2)2 =  a·(a2)2 =  a·((a2/2)2)2   =  a·(a2)2

Note: this requires 3 multiplications rather than 5!

What if n were larger? 
Savings would be more significant

This is much faster than the straightforward computation
Straightforward computation:  n multiplications
Smarter computation:  log(n)  multiplications
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Smarter Version in Java
25

n = 0:  a0 = 1
n nonzero and even:  an = (an/2)2

n nonzero and odd:  an = a·(an/2)2

parameters
local variable

static int power(int a, int n) {
if (n == 0) return 1;
int halfPower = power(a,n/2);
if (n%2 == 0) return halfPower*halfPower;
return halfPower*halfPower*a;

}

The method has two parameters and a local variable
Why aren’t these overwritten on recursive calls?

Implementation of Recursive Methods
26

Key idea: 
Use a stack to remember parameters and local 
variables across recursive calls
Each method invocation gets its own stack frame

A stack frame contains storage for
Local variables of method
Parameters of method
Return info (return address and return value)
Perhaps other bookkeeping info

Stacks
27

Like a stack of dinner plates

top element
2nd element
3 d l t

top-of-stack
pointer

stack grows

Like a stack of dinner plates
You can push data on top or pop
data off the top in a LIFO (last-in-
first-out) fashion
A queue is similar, except it is 
FIFO (first-in-first-out)

3rd element
...

bottom 
element

...

Stack Frame
28

A new stack frame is 
pushed with each 
recursive call local variables

The stack frame is 
popped when the 
method returns

Leaving a return value 
(if there is one) on top 
of the stack

a stack frame

return info

parameters

Example: power(2, 5)
29

( ) 2
(hP = ) ?

( ) 2
(hP = ) ?

return info

(a = ) 2
(n = ) 1

(hP = ) ?

( ) 2
(hP = ) 2

( ) 2
(hP = ) ?

return info

(a = ) 2
(n = ) 1
(hP = ) 1

(retval = ) 1

(retval = ) 2

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 2

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 2

return info

(a = ) 2
(n = ) 5
(hP = ) 4

return info

(a = ) 2
(n = ) 5
(hP = ) ?

return info

(a = ) 2
(n = ) 2

return info

(a = ) 2
(n = ) 5
(hP = ) ?

return info

(a = ) 2
(n = ) 2

(retval = ) 4

(retval = ) 32

How Do We Keep Track?
30

At any point in execution, 
many invocations of power
may be in existence

Many stack frames (all for 
power) may be in Stack
Thus there may be several 

Answer: 
Frame Base Register
When a method is invoked, a 
frame is created for that method 
invocation, and FBR is set to point 
to that frame
When the invocation returns FBRdifferent versions of the 

variables a and n

How does processor know 
which location is relevant at 
a given point in the 
computation?

When the invocation returns, FBR
is restored to what it was before 
the invocation
How does machine know what 
value to restore in the FBR?
This is part of the return info in the 
stack frame
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FBR
31

Computational activity takes place 
only in the topmost (most recently 
pushed) stack frame

(n = ) 2
(hP = ) ?

(n = ) 2
(hP = ) ?

return info

(a = ) 2
(n = ) 1

(hP = ) ?

old FBR

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
( )

FBR FBR FBR

old FBRold FBR

old FBRold FBR old FBR

Conclusion
32

Recursion is a convenient and powerful way to define 
functions

Problems that seem insurmountable can often be 
solved in a “divide-and-conquer” fashion:solved in a divide-and-conquer  fashion:

Reduce a big problem to smaller problems of the same kind, 
solve the smaller problems
Recombine the solutions to smaller problems to form 
solution for big problem

Important application (next lecture): parsing


