
CS 2110
Software Desig

B d lid i i ll bBased on slides originally by
Juan Altmayer Pizzorno

port25.com

gn Principles II

OverviewOverview

Last week:
Design Concepts &
Refactoring

Today: Test-Driven
TDD + JUnit by ExaTDD + JUnit by Exa

We use JUnit testingWe use JUnit testing
homework assignme

Principles

Development
mplemple

g to evaluate yourg to evaluate your
ents…

Tests can be greTests can be gre

“I“In my coun
testing is

many

eat!eat!

t f K kh tntry of Kazakhstan
s very nice! Make

t t l !y tests please!

Testing can be gTesting can be g

M lMany people
Write code without bei
Press run and pray
If it fails, they change s

This
Never works
And ruins your Friday

Test-Driven Developm

great!great!

ing sure it will work

something random

evening social plans

ment saves the day!

The ExampleThe Example

A collection class Sm
containing up to N o
typical operations:
add

contains

size

we’ll implement add

mallSet
objects (hence “small”)

adds item
item in the set?
items

d(), size()

Test Driven DevTest Driven Dev

We’ll go about in sm
1.add a test
2.run all tests and wat
3.make a small chang
4.run all tests and see
5.refactor (as needed)

We’ll use JUnitWe ll use JUnit

velopmentvelopment

mall iterations

tch the new one fail
ge
e them all succeed

JUnitJUnit

What do JUnit tests
SmallSet.java S

package edu.cornell.cs.cs2110;

public class SmallSet {
...

p

i
i...

}
p

}

look like?
SmallSetTest.java
package edu.cornell.cs.cs2110;

import org.junit.Test;
import static org.junit.Assert.*;p g j

public class SmallSetTest {
@Test public void testFoo() {

SmallSet s = new SmallSet();SmallSet s = new SmallSet();
...
assertTrue(...);

}

@Test public void testBar() {
...

}}
}

A List of TestsA List of Tests

We start by thinking
not how to implemen

size=0 on empty set
size=N after adding
adding element alre
throw exception if ad
...

Each test verifies a c

about how to test,
nt
t
N distinct elements
ady in set doesn’t change it
dding too many

certain “feature”

A First TestA First Test

W i k f t dWe pick a feature and
SmallSet
class SmallSet {}

SmallSetTest
class SmallSetTest {

T t bli id t@Test public void tes
SmallSet s = new S
assertEquals(0, s

}

This doesn’t compile:

}
}

p
But that’s all right: we
interface by using it

d t t itd test it:

tE t S tSi () {stEmptySetSize() {
SmallSet();
.size());

size() is undefined
’ve started designing the

Red BarRed Bar

A t t b d fi dA test can be defined
SmallSet
class SmallSet {

i i i ()public int size()
{

return 42;
}

Running the test
yields a red bar

}
}

yields a red bar
indicating failure:

If we add the size fun
test, it works!

b f th d i ittbefore the code is written

ction and re-run the the

Green BarGreen Bar

Wh t’ th i l tWhat’s the simplest w

“Fake it till you make
Re-running yields the g y
Bar:

We could now refacto
on with the next featu

t k t t ?way to make a test pass?
SmallSet
class SmallSet {class SmallSet {

public int size() {
return 0;

}

it”
legendary JUnit Green

}

g y

or, but we choose to move
re instead

Adding ItemsAdding Items

To implement adding
SmallSetTest
class SmallSetTest {class SmallSetTest {

@Test public void

@Test public voidp
SmallSet s = n
s.add(new Obje
assertEquals(1

add() is undefined, s

}
}

,
define it:

SmallSet
public int spublic int s

public void a

g items, we first test for it:

{{
d testEmptySetSize() ...

d testAddOne() {() {
new SmallSet();
ect());
1, s.size());

so to run the test we

ize()ize() ...

add(Object o) {}

Adding ItemsAdding Items

Th t t f ilThe test now fails as e
It seems obvious we n
f itof items: Small

priva

publi
re
re

}}

publi
++

And we get a green b
}

t dexpected:
need to count the number
lSet
ate int _size = 0;

{ic int size() {
eturn 0;
eturn _size;

ic void add(Object o) {
+ size;

bar:

_ ;

Adding SomethiAdding Somethi

S h t if dd dSo what if we added
set? SmallSetTest

class SmallSetTeclass SmallSetTe
@Test public

@Test public

@Test public
SmallSet s
Obj tObject o =
s.add(o);
s.add(o);
assertEqua

A t d th t

assertEqua
}

}

As expected, the tes

ing Againing Again

d it l d i thd an item already in the

est {est {
void testEmptySetSize() ...

void testAddOne() ...

void testAddAlreadyInSet() {
s = new SmallSet();

Obj t()= new Object();

als(1 s size());

t f il

als(1, s.size());

st fails...

Remember thatRemember that

We need to rememb
set... SmallSet

private int size
public static fina
private Object _it
...
public void add(Ob

for (int i=0; i
if (items[i_

return;
}

}

_items[_size] =
++_size;

}

All tests pass, so we

}

Item?Item?...

ber which items are in the

= 0;
al int MAX = 10;
tems[] = new Object[MAX];

bject o) {
i < MAX; i++) {
i] == o) {{

= o;

e can refactor that loop...

RefactoringRefactoring

(l) hi h d(...loop) which doesn
could...

SmallSet (before)
public void add(Object o) {

for (int i=0; i < MAX; i++) {
if (_items[i] == o) {

return;
}

}}

_items[_size] = o;
++ size;

All t t till

}

All tests still pass, so

’t “ k t ” itn’t “speak to us” as it
SmallSet (after)
private boolean inSet(Object o)
{

for (int i=0; i < MAX; i++)
{

if (items[i] == o) {_ {
return true;

}
}
return false;;

}

public void add(Object o) {
if (!inSet(o)) {

did ’t b k it!

if (!inSet(o)) {
_items[_size] = o;
++_size;

}
}o we didn’t break it!}

Too ManyToo Many

Wh t if t t ddWhat if we try to add
hold? SmallSetTest

...
@Test public voi@Test public voi

SmallSet s =
for (int i=0;

{
dd(s.add(new

}
s.add(new Obj

}

The test fails with an e
ArrayIndexOutOfBoundsE

W k h thiWe know why this occ
us: “ArrayIndex” isn’t

thmore than SmallSet can

id testAddTooMany() {id testAddTooMany() {
new SmallSet();
 i < SmallSet.MAX; i++)

Obj ())Object());

ect());

error:
Exception

d b t it h ld b thcurred, but it should bother
a sensible error for a “set”

Size MattersSize Matters

We first have add() ch
SmallSet
public void add(Object o)

i (i () iif (!inSet(o) && _size <
_items[_size] = o;
++_size;

}

... re-run the tests, ch

}
}

define our own excep
SmallSetFullException

re run the tests ch

SmallSetFullException
public class SmallSetFullExc

... re-run the tests, ch
and...

heck the size,
{

) {< MAX) {

heck for green,
ption...

heck for green

ception extends Error {}

heck for green,

Testing for ExceTesting for Exce

fi ll t t f... finally test for our
SmallSetTest
@Test public void testAddTp

SmallSet s = new SmallS
for (int i=0; i < Small

s.add(new Object());
}}
try {

s.add(new Object());
fail(“SmallSetFullEx

}

Th t t f il

}
catch (SmallSetFullExce

}

The test fails as exp
so now we fix it...

eptionseptions

tiexception:
TooMany() {y() {
Set();
lSet.MAX; i++) {

xception expected”);

t d

eption e) {}

ected,

Testing for ExceTesting for Exce

... so now we modify
SmallSet
public void add(Object o)

if (!inSet(o) && size <
if (_size >= MAX) {

throw new SmallSethrow new SmallSe
}
_items[_size] = o;
++_size;

}
}

All tests now pass, s

eptionseptions

y add() to throw:

{{
< MAX) {

etFullException();etFullException();

so we’re done:

ReviewReview

Started with a “to do
could have been exp
as we thought of mo

Added features in sm

“a feature without a t

o” list of tests / features
panded
ore tests / features

mall iterations

test doesn’t exist”

Is testing obligaIs testing obliga

Y dYes and no…
When you write code in
teammates definitely!teammates, definitely!

In such settings, failing to
are inflicting errors you c
At Google, people get fir

So… in industry… test o
But what if code is just “

Testing can still help you
tro ble of doing the testtrouble of doing the test
re-use later.
But obviously no need toBut obviously no need to

atory?atory?

professional settings with

o test your code just means you
could have caught on teammates!
red for this sort of thing!
or perish!
“for yourself”?
u debug, and if you go to the

JUnit helps o “keep it” for, JUnit helps you “keep it” for

o go crazy in this caseo go crazy in this case

Fixing a BugFixing a Bug

What if after releasin

Fam

ng we found a bug?

mous last words: “It works!”

A bug can reveaA bug can revea

b t l l… but can also reveal
was faulty in the first p

C d “ l ” dCode “evolves” and so
can trigger buggy beha
This isn’t your fault orThis isn t your fault or
pointing is common

Great testing dramaticGreat testing dramatic
And can make fixing b
But can’t solve everythBut can t solve everyth
attainable in the softwa

al a missing testal a missing test

th t th ifi tithat the specification
place, or incomplete

h i ditiome changing conditions
avior
the client’s fault but fingerthe client s fault but finger

cally reduces bug ratescally reduces bug rates
bugs way easier
hing: Paradise isn’thing: Paradise isn t
are industry

Reasons for TDReasons for TD

By writing the tests f
test the tests
design the interface
ensure the code is te
ensure good test cov

By looking for the simy g
pass,

the code becomes “
simpler”
may be simpler than

DDDD

first, we

by using it
estable
verage

mplest way to make tests p y

as simple as possible, but no p p ,

n you thought!

Not the Whole SNot the Whole S

There’s a lot more wor
What to test / not to tes

e.g.: external librar
How to refactor tests
Fixtures
Mock Objects
Crash Test Dummies
...

Beck, Kent: Test-Driven D

StoryStory

rth knowing about TDD
st
ries?

Development: By Example

Even soEven so…

Th b t d ittThe best code written
have some rate of bug

Th fl t d iThey reflect design ov
Evolutionary change in
I tibiliti b tIncompatibilities betwe
different people

So never believe that s
O l i 2110 i tOur goal in cs2110 is t
In later cs courses we

b f i l ill tillby professionals will still
gs

i htversights
n requirements

d l d l d been modules developed by

software will be flawless
t d ll iblto do as well as possible
’ll study “fault tolerance”!

