Based on slides originally by

CS 2 11 O Juan Altmayer Pizzorno

port25.com

Overview

Last week:
Design Concepts & Principles
Refactoring

Today: Test-Driven Development
TDD + JUnit by Example

We use JUnit testing to evaluate your
homework assignments...

Tests can be great!

“In my country of Kazakhstan
testing Is very nice! Make
many tests please!

Testing can be great!

Many people
Write code without being sure it will work
Press run and pray
If it fails, they change something random

This
Never works
And ruins your Friday evening social plans

Test-Driven Development saves the day!

The Example

A collection class SmallSet
containing up to N objects (hence “small”)
typical operations:

add adds item
contains item In the set?
size # items

we’ll implement add (), size ()

Test Driven Development

We’ll go about in small iterations
add a test
run all tests and watch the new one fail
make a small change
run all tests and see them all succeed
refactor (as needed)

We'll use JuUnit

Junit

What do JUnit tests look like?

ornell.cs.cs2110; 11.cs.cs2110;

Test;
.junit.Assert.¥*;

SmallSet {

1SetTest
oid testFoo () {
= new SmallSet () ;

ca)

oid testBar ()

A List of Tests

We start by thinking about how to test,
not how to implement
size=0 on empty set
size=N after adding N distinct elements
adding element already Iin set doesn’t change it
throw exception if adding too many

Each test verifies a certain “feature”

A First Test

We pick a feature and test it:

allset {}

etTest {

lic void testEmptySetSize()
et s = new SmallSet () ;

Equals (0, s.size());

compile: size () IS undefined

| right: we’ve started designing the
using it

Red Bar

A test can be defined before the code iIs written

allset
c int size()

turn 42;

ning the test
s a red bar
ating failure:

It works!

®no

lava - 52110/ src/edu/cornell fcs/f

et

5% 0-Qr | BH G @

- |P[E] 41§ -

- =
% Packa (Hierer [E'ﬂ}Unit g, T 8

4] SmallSet.java |J| EmallSetTestjava o

N

Finished after 0.052 seconds =

(] q | Ca
b e gl |

Rums: 171 E Errors: C B Failures: 1

@t edu.cornellcs.cs2110.5mellSetTest
B t2stemptysethize (U.U30 s5)

pockogz edu.cornell.cs.cs2128;

import org.-unit.Test;
import stotic org.junit.Assert.*;

public class SmallSetTast [

@Tzst public wvold testEnptySetSizel) {
SmallSet s = new SmallSet();
assertEguals(8, s.size});

1

}

add the size function and re-run the the

Green Bar

What's the simplest way to make a test pass?

allset {
c int size()
turn O0;

“Fake it till you make it”

Re-running yields the legend
Bar:

It Green

Runs: 1/1 HE Errors; 0 B Failures: 0

We could now refactor, but w se to move

on with the next feature inste

Adding Items

To implement adding items, we first test for It:

etTest {
lic void testEmptySetSize() ...

lic void testAddOne ()
et s = new SmallSet () ;
new Object ()) ;

Equals (1, s.size());

add (ned, so to run the test we

defi

nt size() ...

oid add(Object o) {}

Adding Items

I
The test now fails as expected:

It seems obvious we need to count the number
of items:

int size = 0;
nt size() {

n 0O;
n size;

oid add(Object o) {
ze;

And we get a gre

Adding Something Again

So what If we added an item already in the

set?
etTest {
lic void testEmptySetSize() ...

lic void testAddOne () ...

lic void testAddAlreadyInSet () {
et s = new SmallSet () ;

o = new Object () ;

o) ;

o) ;

Equals (1, s.size()) ;

test fails... e

AS exp

Remember that Iltem?...

We need to remember which items are in the
set...

int size = 0;
tatic final int MAX = 10;
Object items[] = new Object [MAX];

oid add (Object o) {

int i=0; i < MAX; i++) {
(items[1i] == 0) {
return;

s[size]l = o;
ze;

|
, SO we can refactor that loop...

All test

Refactoring

(...loop) which doesn’t “speak to us” as It

could...
inSet (Object o)
(before) 1 < MAX; i++)
oid add(Object o) {
int 1=0; i < MAX; i++) { [i] == o) {
(items[i] == o) { true;
return;
s[size] = o; Object o) {
ze ;

) {

ze]l = 0O;

|l tests still pass, s re|ak It!

Too Many

What if we trv to add more than smali1set can

void testAddTooMany () {

1=0; 1 < SmallSet.MAX; 1i++)

Object ())
The test NEIMOT. ——
ArrayInde dsException

We kno
us: “Arra

occurred, but it should bother
n't a sensible error for a “set”

Size Matters

We first have ada () check the size,

oid add (Object o) {

inSet (o) && size < MAX) {
tems[size] = o;

_size;

n the tests, check for green, '
our own exception...

FullException extends Error {}

s, check for green, |

Testing for Exceptions

... finally test for our exception:

void testAddTooMany ()

s = new SmallSet () ;

i=0; i < SmallSet.MAX; i++) {
new Object ()) ;

new Object());
SmallSetFullException expected”);

allSetFullException e) {}

s as expected,
fix It...

Testing for Exceptions

... SO now we modify add() to throw:

oid add (Object o) {
insSet{o—&& —Size < MAX) {
(_ size >= MAX) {
throw new SmallSetFullException() ;

tems[size]
size;

O;

|
ts now pass, so we're done:

Review

1 Started with a “to do” list of tests / features

= could have been expanded
as we thought of more tests / features

1 Added features in small iterations

(1) add test

(3) refaﬂc\ / \‘_
NN S

(2) make it pass

0 “a feature without a test doesn’t exist”

IS testing obligatory?

Yes and no...

When you write code in professional settings with
teammates, definitely!

In such settings, failing to test your code just means you
are inflicting errors you could have caught on teammates!

At Google, people get fired for this sort of thing!
So... In industry... test or perish!

But what If code Is just “for yourself”?

Testing can still help you debug, and if you go to the
trouble of doing the test, JUnit helps you “keep it” for
re-use later.

But obviously no need to go crazy In this case

Fixing a Bug
o
o What If after releasing we found a bug?

Famous last words: “It works!”

A bug can reveal a missing test

... but can also reveal that the specification
was faulty in the first place, or incomplete

Code “evolves” and some changing conditions
can trigger buggy behavior

This isn’t your fault or the client’s fault but finger
pointing IS common

Great testing dramatically reduces bug rates
And can make fixing bugs way easier

But can’t solve everything: Paradise isn’t
attainable In the software industry

Reasons for TDD

By writing the tests first, we
test the tests
design the interface by using it
ensure the code is testable
ensure good test coverage

By looking for the simplest way to make tests
pass,

the code becomes “as simple as possible, but no
simpler”

may be simpler than you thought!

Not the Whole Story

There’s a lot more worth knowing about TDD

What to test / not to test
e.g.. external libraries?

How to refactor tests
Fixtures

Mock Objects

Crash Test Dummies

* Beck, Kent: Test-Driven Development: By Example

Even so...

The best code written by professionals will still
have some rate of bugs

They reflect design oversights
Evolutionary change in requirements

Incompatibilities between modules developed by
different people

So never believe that software will be flawless
Our goal in ¢s2110 is to do as well as possible
In later cs courses we’ll study “fault tolerance”!

