
23/08/2009

1

CS 2110
Software Design Principles I

Based on a slide set by
Juan Altmayer Pizzorno

port25.com

Overview

Today: Design Concepts & Principles
Top-Down, Bottom-Up Design
Software Process (briefly)

Modularity
Information Hiding, Encapsulation
Principles of Least Astonishment and “DRY”
Refactoring (if there’s time)

Next week: Test-Driven Development

Our Challenge

For simple applications, writing code is “linear”
You pin down the problem

Example: “search files and list lines that contain the
string SnortBlat”

You make minor decisions, such as where the list
of files will come from, and whether SnortBlat will
be a constant or an input to the program
And then you write the code

Easy as pie!

But it isn’t always so easy!

Interesting applications are often challenging in
ways that simple ones aren’t

Data sets may be enormous
The thing being computed may be complexg g p y p
The amount of code required to do it in the most
obvious way may seem huge (and perhaps also,
repetitious)

A more complex example

Garmin GPS unit tracks your bike ride

… making display easy

23/08/2009

2

… or comparisons

How did I do today compared to the last time I
rode this same route?

… or comparisons

Suppose we wanted to automate “finding
previous rides on the same route”

A rides is a long list of location points and won’t
be identical each time
How could we search a list of “rides” to see which
ones were rides on the same route?

Is this problem similar to search files for the
word SnortBlat, or different?

Actual data is an XML document
containing a list of “track points”

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<TrainingCenterDatabase xmlns="http://www.garmin.com/xmlschemas/TrainingCenterDatabase/v2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.garmin.com/xmlschemas/TrainingCenterDatabase/v2 http://www.garmin.com/xmlschemas/TrainingCenterDatabasev2.xsd">

<Activities>
<Activity Sport="Biking">
<Id>2009-08-22T13:17:02Z</Id>
<Lap StartTime="2009-08-22T13:17:02Z">

<TotalTimeSeconds>4625.0800000</TotalTimeSeconds>
<DistanceMeters>30319.2753906</DistanceMeters>
<MaximumSpeed>17.7600002</MaximumSpeed>
<Calories>1451</Calories>
<Intensity>Active</Intensity>
<Cadence>0</Cadence>
<TriggerMethod>Manual</TriggerMethod><TriggerMethod>Manual</TriggerMethod>
<Track>

<Trackpoint>
<Time>2009-08-22T13:17:03Z</Time>
<Position>

<LatitudeDegrees>42.5619387</LatitudeDegrees>
<LongitudeDegrees>-76.6450787</LongitudeDegrees>

</Position>
<AltitudeMeters>229.4117432</AltitudeMeters>
<DistanceMeters>9.2514458</DistanceMeters>
<SensorState>Absent</SensorState>

</Trackpoint>
<Trackpoint>

<Time>2009-08-22T13:17:06Z</Time>
<Position>

<LatitudeDegrees>42.5618390</LatitudeDegrees>
<LongitudeDegrees>-76.6449268</LongitudeDegrees>

</Position>
<AltitudeMeters>227.4891357</AltitudeMeters>
<DistanceMeters>26.0653191</DistanceMeters>
<SensorState>Absent</SensorState>

</Trackpoint>
…..

</Track>
…

(Time=2009-08-22T13:17:03Z,Latitude=42.5619387, Longitude=- 76.6450787,Altitude=229.4117432)

(Time=2009-08-22T13:17:06Z,Latitude=42.5618390, Longitude=-76.6449268,Altitude=227.4891357)

Each ride is in a separate file

Sort of like a set of documents

I want to find the ones that “describe” the same
route – the same list of roads in the sameroute the same list of roads in the same
order, turns at the same place, etc

But the GPS unit won’t have collected
snapshots at identical spots

An idea!

Think of each ride as a curve that we
represent as a graph (nodes are GPS data,
edges link successive points)
If two rides were on the same route, then these ,
curves should overlap closely, provided we
ignore the timestamp

(This is because the rides were different days and
perhaps different speeds)

Which rides were similar?

23/08/2009

3

Which rides were similar?

Could match the curves “edge by edge” and
compute area between them….

(Time=2009-08-22T13:17:03Z,Latitude=42.5619387, Longitude=- 76.6450787,Altitude=229.4117432)

(Time=2009-08-22T13:17:06Z,Latitude=42.5618390, Longitude=-76.6449268,Altitude=227.4891357)

(Time=2009-08-22T13:17:03Z,Latitude=42.5619387, Longitude=- 76.6450787,Altitude=229.4117432)

Similar rides should
have small area difference
Different rides won’t match at all….

(Time=2009-08-22T13:17:09Z,Latitude=42.5619781, Longitude=- 76.6450671,Altitude=199.4117432)

(Time=2009-08-22T13:17:13Z,Latitude=42.5619513, Longitude=-76.6440188,Altitude=118.4891357)

(Time=2009-08-22T13:17:06Z,Latitude=42.5618390, Longitude=-76.6449268,Altitude=227.4891357)

(Time=2009-08-22T13:17:09Z,Latitude=42.5619781, Longitude=- 76.6450671,Altitude=199.4117432)

(Time=2009-08-22T13:17:13Z,Latitude=42.5619513, Longitude=-76.6440188,Altitude=118.4891357)

The idea of abstraction

Our goal is to learn to think very abstractly
A “ride” that followed some “route”
The ride may differ (faster, slower, paused to wait
for a car to pass) and yet the “route” is essentially This gets at the idea of abstraction. In some sense
the same
Yet even the route won’t be identical (depends on
how you define identical…)

Finding the “same route” is like “searching files
for some term” yet all the details are different!

g
we can use the idea of searching files to think
about the search for rides on the same route!

Software Engineering

Actually, more like an “art”!
Elegantly expresses the necessary logic
Built with minimum effort… “obviously” correct…
Self-testing
Flexible and extensible: can be understood and
maintained by someone years after you retire

The go-it-alone style is fine too, but even if a
program is for your own use, quality matters

Applied to bike riding

We have an idea for how we might find similar
bike rides in a set of bike rides
But to turn this into software we need to decide

What Java classes to create and what methods toWhat Java classes to create and what methods to
support in each
We want this to “fit” with our mental image of how
the comparison algorithm needs to work
There are many ways to do this, but some might
be awkward to implement or might be confusing
to actually work with…

Software Engineering: History

In early days, wasn’t recognized as a real need
Then studies revealed that the best computer
scientists were often 10x or even 100x more
productive than the average code hacker!p g

Moreover, some languages seemed to encourage
better code quality
Java was one of them…

Software Engineering emerged from the effort
to reduce this to a kind of science

Top-Down Design

Garmin GPS software
User

Interface
Show
Ridec

Export to
Google

Find
Similar Compare

Refine the design at each step
Decomposition / “Divide and Conquer”

Rides List One Ride

Track Point
List

Track Point
Object

Route

23/08/2009

4

Not a perfect, pretty picture

Boxes at lower levels are “more concrete” and
contain things like GPS records, actual strings
Boxes at higher levels are more abstract and
closer to dealing with the userg
In between are “worker bees” that do things
like file storage and waking up Google Earth
But don’t take the hierarchy too seriously

Most things don’t fit perfectly into trees

Bottom-Up Design

Just the opposite: start with parts
User

Interface
Show
Ridec

Export to
Google

Find
Similar Compare

Composition
Build-It-Yourself (e.g. IKEA furniture)

Rides List One Ride

Track Point
List

Track Point
Object

Route

Top-Down vs. Bottom-Up

Is one of these ways better? Not really!
It’s sometimes good to alternate
By coming to a problem from multiple angles you might
notice something you had previously overlooked
Not the only ways to go about itNot the only ways to go about it

With Top-Down it’s harder to test early because
parts needed may not have been designed yet
With Bottom-Up, you may end up needing
things different from how you built them

Software Process

For simple programs, a simple process…

“Waterfall”

But to use this process, you need to be sure that the
requirements are fixed and well understood!

Many software problems are not like that
Often customer refines the requirements when you try
to deliver the initial solution!

Incremental & Iterative

Deliver versions of the system in several small cycles

Recognizes that for some settings, software
development is like gardening
You plant seeds… see what does well… then replace
the plants that did poorly

Modularity

Module: component of a system with a
well-defined interface. Examples:

Tires in a car (standard size, many vendors)
Cable adaptor for TV (standard input/output)
External storage for computer
...

Modules “hide information” behind their
interfaces

23/08/2009

5

A module isn’t just an object

We’re using the term to capture what could be
one object, but will often be a larger
component constructed using many objects

In fact Java has a module subsystem for this
reason (we won’t use it in cs2110)

A module implements some “abstraction”
You think of the whole module as a kind of big
object

Information Hiding

What “information” do modules hide?
“Internal” design decisions.

class Set {
...

bli id dd(Obj t)

A class’s interface is everything in it that is
externally accessible

public void add(Object o) ...

public boolean contains(Object o) ...

public int size() ...
}

Encapsulation

By hiding code and data behind its interface,
a class encapsulates its “inner workings”
Why is that good?

Lets us change the implementation later without g p
invalidating the code that uses the class

class LineSegment {
private Point2D _p1, _p2;

...
public double length() {

return _p1.distance(_p2);
}

}

class LineSegment {
private Point2D _p;
private double _length;
private double _phi;

...
public double length() {

return _length;
}

}

Encapsulation

Why is that good? (continued)

Sometimes, we want a few different classes to
implement some shared functionality
For example, recall the “iterator” construct we saw
in connection with collections:

To support iteration, a class simply needs to
implement the Iterable interface

Iterator it = collection.iterator();

while (it.hasNext()) {
Object next = it.next();
doSomething(next);

}

for (String s: args) {
System.out.println(“Argument “+s);

}

Degenerate Interfaces

Public fields are usually a Bad Thing:
class Set {

public int _count = 0;

public void add(Object o) ...

Anybody can change them; the class has no
control

public boolean contains(Object o) ...

public int size() ...
}

Interfaces vs. Implementations

This says “I need this specific implementation”:

This says “I can operate on anything that

public void doSomething(LinkedList items) ...

This says I can operate on anything that
supports the Iterable interface”

Interfaces represent higher levels of abstraction
(they focus on “what” and leave out the “how”)

public void doSomething(Iterable items) ...

23/08/2009

6

Principle of Least Astonishment

Have your designs work how a user would
expectBad:

public int product(int a, int b) {
return a*b > 0 ? a*b : -a*b;

Names and comments matter!

}

Better:
public int absProduct(int a, int b) {

return a*b > 0 ? a*b : -a*b;
}

Principle of Least Astonishment

Unexpected side effects are a Bad Thing

class Integer {
private int _value;
...
public Integer times(int factor) {

_value *= factor;
return new Integer(_value);

}
}
...
Integer i = new Integer(100);
Integer j = i.times(10);

Developer was trying to be
clever. But what does this

code do to i?

Duplication

It is very common to find some chunk of working
code, make a replica, and then edit the replica
But this makes your software fragile: later, when
the code you copied needs to be revised, either

The person doing that changes all instances orThe person doing that changes all instances, or
some become inconsistent

Duplication can arise in many ways:
constants (repeated “magic numbers”)
code vs. comment
within an object’s state
...

Duplication in Comments

public double totalArea() {
...
// now add the circle
area += PI * pow(radius,2);
...

}

public double totalArea() {
...
area += circleArea(radius);
...

}

private double circleArea(double radius) {
return PI * pow(radius 2);

Some people use comments when they should be
creating a new method to do the thing the
comment “says” you are doing!

If the thing you are doing captures some idea (here, it
involves the formula for the area of a circle), create a
method and use that
The code itself becomes “self documenting”

return PI pow(radius, 2);
}

Duplication of State

Duplication of state can lead to inconsistency
within an object:

class LineSegment {
private Point2D _p1, _p2;
private double _length;

class LineSegment {
private Point2D _p1, _p2;

Can you see how this code could evolve later
and accidentally become inconsistent?
Duplication may be desirable for performance,
but don’t optimize too soon

...
public double length() {

return _length;
}

}

...
public double length() {

return _p1.distance(_p2);
}

}

“DRY” Principle

Don’t Repeat Yourself

A nice goal is to to have each piece of
knowledge live in one placeknowledge live in one place
But don’t go crazy over it

DRYing up at any cost can increase
dependencies between code
“3 strikes and you refactor” (i.e., clean up)

23/08/2009

7

Refactoring

Refactor: to improve code’s internal structure
without changing its external behavior
Most of the time we’re modifying existing
software
“Improving the design after it has been written”“Improving the design after it has been written”
Refactoring steps can be very simple:

Other examples: renaming variables, methods,
classes

public double weight(double mass) {
return mass * 9.80665;

}

static final double GRAVITY = 9.80665;

public double weight(double mass) {
return mass * GRAVITY;

}

Why is refactoring good?

If your application later gets used as part of a
Nasa mission to Mars, it won’t make mistakes
Every place that the gravitational constant
shows up in your program a reader will realize
that this is what she is looking at
The compiler may actually produce better code

Extract Method

A comment explaining what is being done
usually indicates the need to extract a
method

public double totalArea() { public double totalArea() {

One of the most common refactorings

...
// now add the circle
area += PI * pow(radius,2);
...

}

...
area += circleArea(radius);
...

}

private double circleArea(double radius) {
return PI * pow(radius, 2);

}

Extract Method

Simplifying conditionals with Extract Method
before

if (date.before(SUMMER_START) || date.after(SUMMER_END)) {
charge = quantity * _winterRate + _winterServiceCharge;

}
l {else {
charge = quantity * _summerRate;

}

after
if (isSummer(date)) {

charge = summerCharge(quantity);
}
else {

charge = winterCharge(quantity);
}

Refactoring & Tests

Eclipse supports various refactorings

You can refactor manually
Automated tests are essential
to ensure external behaviorto ensure external behavior
doesn’t change
Don’t refactor manually without
retesting to make sure you didn’t
break the code you were “improving”!

More about tests and how to drive
development with tests next week

Back to the future…

All of this leads back to
solving problems like our
bike-ride comparisons
In fact we’ll solve a similar problem for homework!

Animals with DNA containing genes
Comparing genes is like comparing bike routes
Comparing animals is like finding people who rode
similar sets of bike routes

But solution will need some “tricks of the trade”
that we’ll cover in the next few weeks of classes…

