
20/08/2009

1

JAVA REVIEW
Lecture 2
CS2110 Fall 2008

Announcements

Assignment 1 has been posted
Due Wednesday, September 9, 11:59pm.

No partners on A1. (Groups of 2 allowed on A2-A5).

Check that you are in CMS
Materials available in CMS
Report any problems to Bill Hogan, cs22110
administrative assistant (whh@cs.cornell.edu)

Announcements

It’s really a good idea to start on A1 and check
CMS this week (well before the assignment is due)
Sections start this week

Section material will be useful for A1
Available help

Consulting will start very soon—watch for
announcements
Instructor & TA office hours are in effect

Check daily for announcements
http://courses.cs.cornell.edu/cs2110
Newsgroup also worth watching

Today — A Smorgasbord

A brief (biased) history of programming
languages
Review of some Java/OOP concepts
Java tips trick and pitfallsJava tips, trick, and pitfalls
Debugging and experimentation

Machine Language

Used with the earliest
electronic computers (1940s)

Machines use vacuum tubes
instead of transistors

Programs are entered by
setting switches or reading

Example code
0110 0001 0000 0110

add reg1 6

An idea for improvementsetting switches or reading
punch cards
All instructions are numbers

p
Use words instead of
numbers
Result: Assembly Language

Assembly Language
Idea: Use a program (an
assembler) to convert
assembly language into
machine code
Early assemblers were some
of the most complicated code
f th ti (1950)of the time (1950s)

Example code
ADD R1 6
MOV R1 COST
SET R1 0
JMP TOP
Idea for improvement

Let’s make it easier for humans by
designing a high level computer
language

Result: high-level languages

20/08/2009

2

High-Level Language
Idea: Use a program (a
compiler or an interpreter)
to convert high-level code
into machine code

Pro

The whole concept was
initially controversial

FORTRAN (mathematical
FORmula TRANslating
system) was designed with
efficiency very much in
mind

Easier for humans to write,
read, and maintain code

Con
The resulting program was
usually less efficient than
the best possible
assembly-code

Waste of memory
Waste of time

FORTRAN
Initial version developed in
1957 by IBM

Example code

C SUM OF SQUARES
ISUM = 0
DO 100 I=1,10
ISUM = ISUM + I*I

100 CONTINUE

FORTRAN introduced many
high-level language
constructs still in use today

Variables & assignment
Loops
Conditionals
Subroutines
Comments

ALGOL

Sample code

comment Sum of squares
begin

integer i, sum;

ALGOL
= ALGOrithmic Language
Developed by an international
committee
First version in 1958 (not
widely used)
Second version in 1960
(become a major success)

ALGOL 60 included recursion
Pro: easier to design clear,
succinct algorithms
Con: too hard to implement; too
inefficient

for i:=1 until 10 do
sum := sum + i*i;

end

COBOL
COBOL =
COmmon Business Oriented
Language
Developed by the US
government (about 1960)

Design was greatly influenced

COBOL included the idea of
records (a single data
structure with multiple fields,
each field holding a value)

g g y
by Grace Hopper

Goal: Programs should look like
English

Idea was that anyone should
be able to read and
understand a COBOL
program

Simula & Smalltalk
These languages
introduced and popularized
Object Oriented
Programming (OOP)

Simula was developed in
Norway as a language for
simulation in the 60ssimulation in the 60s
Smalltalk was developed
at Xerox PARC in the 70s

These languages included
Classes
Objects
Subclassing and
inheritance

Java – 1995 (James Gosling)

Java includes
Assignment statements,
loops, conditionals from
FORTRAN (but syntax
from C)

Recursion from ALGOL

Fields from COBOL

OOP from Simula &
Smalltalk

JavaTM and logo © Sun Microsystems, Inc.

20/08/2009

3

In theory, you already know Java…

Classes and objects
Static vs instance fields and methods
Primitive vs reference types
Private vs public vs packagep p g
Constructors
Method signatures
Local variables
Arrays
Subtypes and Inheritance, Shadowing

… but even so

Even standard Java features have some
subtle aspects relating to object orientation
and the way the type system works
Let’s touch on a few of these todayy
We picked topics that will get you thinking
about Java the way that we think about it!

Java is object oriented

In most prior languages, code was executed
line by line and accessed variables or record

In Java we think of the data as beingIn Java, we think of the data as being
organized into objects that come with their
own methods, which are used to access them

This shift in perspective is critical
When coding in Java one is always thinking about
“which object is running this code?”

Dynamic and Static

Some kinds of information is “static”
There can only be one instance
Like a “global variable” in C or C++ (or assembler)

Object-oriented information is more “dynamic”
Each object has its own private copy
When we create a new object, we make new
copies of the variables it uses to keep its state

In Java this distinction becomes very important

Names

The role of a name is to tell us
Which class is being referenced, although sometimes this is
clear from the context
Which object is being referenced, unless we’re talking about
a static method or a static variable

Example
System.out.println(a.serialNumber)

out is a static field in class System
The value of System.out is an instance of a class that has an
instance method println(int)

If an object must refer to itself, use this
this.i = i;

The main Method

Can be called from anywhere

Associated with the class; don’t need an instance (an
object) to invoke it

No return value

public static void main(String[] args) {
...
}

Method must be named main

Parameters passed to program on command line or, in
Eclipse, can be defined in the “Run” configuration dialog
box (which the same as the “Debug” one…)

20/08/2009

4

Static methods and variables

If a method or a variable is declared “static”
there will be just one instance for the class

Otherwise, we think of each object as having its
own “version” of the method or variable

Anyone can call a static method or access a
static variable
But to access a dynamic method or variable
Java needs to know which object you mean

Static methods and variables

Dynamic
method abc()

Dynamic
method abc()

class Foo {
static int xyz;
static void bar(int i) { … }
int zyx;
void abc() { … }

}

Class Foo

static method
bar()

static variable
xyz

Foo instance
a

method abc()

Dynamic
variable zyx

Foo instance
b

method abc()

Dynamic
variable zyx

Foo a = new Foo();
Foo b = new Foo();
a.bar(b.zyx);

Static methods and variables
class Thing {

static int s_val; // One for the whole class
int o_val; // Each object will have its own personal copy

static void s_method() // Anyone can call this
{

s_val++; // Legal: increments the shared variable s_val
l l // Ill l Whi h i f l d ?o_val = s_val; // Illegal: Which version of o_val do we mean?

o_method(s_val); // Illegal: o_method needs an object reference
}

void o_method()
{

s_val++; // Legal
this.s_val++; // Illegal: s_val belongs to the class, not object
o_val = s_val; // Legal: same as this.o_val = s_val
s_method(); // Legal: calls the class method s_method()
o_method(); // Legal: same as this.o_method();

}
}

Avoiding trouble

Use of static methods is discouraged
Keep in mind that “main” is a static method

Hence anything main calls needs to have an
associated object instance, or itself be staticj ,

class Thing {
int counter;
static int sequence;

public static void main(String[] args)
{

int c = ++counter; // Illegal: counter is associated with an
// object of type Thing. But which object?

int s = ++sequence; // Legal: sequence is static too
}

}

Class Hierarchy

Object

superclass of Puzzle and
Array and EPuzzle

superclass of EPuzzle
subclass of Object

Puzzle

EPuzzle

Array

Every class (except Object) has a unique
immediate superclass, called its parent

subclass of Puzzle and
Object

Constructors

Called to create new instances of a class
Default constructor initializes all fields of the
class to default values (0 or null)

class Thing {
int val;

Thing(int val) {
this.val = val;

}

Thing() {
this(3);

}
}

Thing one = new Thing(1);
Thing two = new Thing(2);
Thing three = new Thing();

20/08/2009

5

What about non-class variables?

Those are not automatically initialized, you
need to do it yourself!
Can cause confusion

class Thing {
this.val was automatically

initialized to zero, but undef has
f

g {
int val;

Thing(int val) {
int undef;
this.val = val+undef;

}

Thing() {
this(3);

}
}

no defined value! Yet the
declaration looks very similar! In

what way did it differ?

Finalizers

Like constructors but called when the object is
deallocated
Might not happen when you expected

Garbage collector decides when to actuallyGarbage collector decides when to actually
deallocate an object
So objects can linger even when you no longer
have a reference to them!
For this reason, we tend not to use finalizers –
they add an undesired form of unpredictability

Static Initializers

Run once when class is loaded
Used to initialize static objects

class StaticInit {
static Set<String> courses = new HashSet<String>();static Set<String> courses = new HashSet<String>();
static {

courses.add("CS 2110");
courses.add("CS 2111");

}

public static void main(String[] args) {
...

}
}

Static vs Instance Example

16
class Widget {

static int nextSerialNumber = 10000;
int serialNumber;
Widget() {

serialNumber = nextSerialNumber++;;
}
public static void main(String[] args) {

Widget a = new Widget();
Widget b = new Widget();
Widget c = new Widget();
System.out.println(a.serialNumber);
System.out.println(b.serialNumber);
System.out.println(c.serialNumber);

}
}

Names

Refer to my static and instance fields & methods by
(unqualified) name:

serialNumber
nextSerialNumber

Refer to static fields & methods in another classRefer to static fields & methods in another class
using name of the class

Widget.nextSerialNumber

Refer to instance fields & methods of another
object using name of the object

a.serialNumber

Overloading of Methods

A class can have several methods of the same name
But all methods must have different signatures
The signature of a method is its name plus the types of its
parameters

Example: String.valueOf(...) in Java APIp g ()
There are 9 of them:

valueOf(boolean);
valueOf(int);
valueOf(long);
...

Parameter types are part of the method’s signature

20/08/2009

6

Primitive vs Reference Types
Primitive types

int, short, long, float, byte,
char, boolean, double

Efficient
1 or 2 words
Not an Object—unboxed

57abc

Reference types
Objects and arrays
String, int[], HashSet
Usually require more memory
Can have special value null
Can compare null with ==, !=
Generates NullPointerException
if you try to dereference null

•abc

nonzero

57val

nullnext

Comparing Reference Types

Comparing objects (or copying them) isn’t
easy!

You need to copy them element by element
Compare objects using the “equals” method,
which implements “deep equality”which implements deep equality”

Example: suppose we have
String A = “Fred”, B = “Fred”;
What will A == B return?
Need to use A.equals(B)

False! A and B are different
strings even though their value
is the same.

Comparing Reference Types

You can define “equals” for your own classes
Do this by overriding the built in “equals”
method:

boolean equals(Object x);boolean equals(Object x);
But if you do this, must also override
Object.hashCode() (more on this later)

== versus .equals

A few wrong and then correct examples

What you wrote How to write it correctly
"xy" == "xy" “xy".equals("xy")
"xy" == "x" + "y" "xy".equals("x" + "y")
“xy" == new String("xy“) "xy".equals(new String("xy"))

== with primitive types

Puzzle: why do Integer comparisons work?
Integer I = 7;
(I == 7)?
(I == new Integer(7))

True, but not obvious why!
False(I == new Integer(7))

… the first comparison only works because
Java auto-unboxes I to compare it with int 7.
If it had autoboxed the 7, the comparison
would have failed! Lucky Java gets this right...

False

== with primitive types

Integer I;
(I == null)? Uninitialized
(I == 0)? Null ref. ex.

Integer I = new Integer(0);
(I == null)? False

int i;
(i == null)? Undefined
(i == 0)? Uninitialized

()
(I == 0)? True

static int i;
(i == null)? Undefined
(i == 0)? True

20/08/2009

7

Arrays

Arrays are reference types
Array elements can be reference
types or primitive types

E g int[] or String[]

String[] a = new String[4];

a

a[2] = "hello"

E.g., int[] or String[]

a is an array, a.length is its length
Its elements are
a[0], a[1], ..., a[a.length-1]
The length is fixed when the array is
first allocated using « new »

null

“hello”

a.length = 4

Accessing Array Elements Sequentially

public class CommandLineArgs {
public static void main(String[] args) {

System.out.println(args.length);
// old-style
for (int i = 0; i < args.length; i++) {f (; g . g ;) {

System.out.println(args[i]);
}
// new style
for (String s : args) {

System.out.println(s);
}

}
}

Back to the Class Hierarchy

Object

superclass of Puzzle and
Array and EPuzzle

superclass of EPuzzle
subclass of Object

Puzzle

EPuzzle

Array

Every class (except Object) has a unique
immediate superclass, called its parent

subclass of Puzzle and
Object

Inheritance

A subclass inherits the methods of its superclass
Example: methods of the Object superclass:

equals(), as in A.equals(B)
toString(), as in A.toString()
… others we’ll learn about later in the course

… every object thus supports toString()!

Overriding

A method in a subclass overrides a method in
superclass if:

both methods have the same name,
both methods have the same signature (number g (
and type of parameters and return type), and
both are static methods or both are instance
methods

Methods are dispatched according to the
runtime type of the actual, underlying object

Accessing Overridden Methods

Suppose a class S overrides a method m in its
parent

Methods in S can invoke the overridden method
in the parent as

super m()super.m()
In particular, can invoke the overridden method in
the overriding method! This is very useful

Caveat: cannot compose super more than
once as in

super.super.m()

20/08/2009

8

Unexpected Consequences

An overriding method cannot have more
restricted access than the method it overrides

class A {
public int m() {...}

}}
class B extends A {

private int m() {...} //illegal!
}

A foo = new B(); // upcasting
foo.m(); // would invoke private method in

// class B at runtime

… a nasty example

class A {
int i = 1;
int f() { return i; }

}
class B extends A {

int i = 2; // Shadows variable i in class A.
int f() { return i; } // Overrides method f in class Aint f() { return -i; } // Overrides method f in class A.

}
public class override_test {

public static void main(String args[]) {
B b = new B();
System.out.println(b.i); // Refers to B.i; prints 2.
System.out.println(b.f()); // Refers to B.f(); prints -2.
A a = (A) b; // Cast b to an instance of class A.
System.out.println(a.i); // Now refers to A.i; prints 1;
System.out.println(a.f()); // Still refers to B.f(); prints -2;

}
}

The “runtime” type of “a”
is “B”!

Shadowing

Like overriding, but for fields instead of methods
Superclass: variable v of some type
Subclass: variable v perhaps of some other type
Method in subclass can access shadowed variable using super.v
Variable references are resolved using static binding (i.e., at g g (
compile-time), not dynamic binding (i.e., not at runtime)

Variable reference r.v uses the static (declared) type of the
variable r, not the runtime type of the object referred to by r

Shadowing variables is bad medicine and should be avoided

… back to our earlier example

class A {
int i = 1;
int f() { return i; }

}
class B extends A {

int i = 2; // Shadows variable i in class A.
int f() { return i; } // Overrides method f in class Aint f() { return -i; } // Overrides method f in class A.

}
public class override_test {

public static void main(String args[]) {
B b = new B();
System.out.println(b.i); // Refers to B.i; prints 2.
System.out.println(b.f()); // Refers to B.f(); prints -2.
A a = (A) b; // Cast b to an instance of class A.
System.out.println(a.i); // Now refers to A.i; prints 1;
System.out.println(a.f()); // Still refers to B.f(); prints -2;

}
}

The “declared” or “static”
type of “a” is “A”!

Array vs ArrayList vs HashMap

Three extremely useful constructs (see Java API)

Array
Storage is allocated when array
created; cannot change
Extremely fast lookups

HashMap (in java.util)
Save data indexed by keys
Can lookup data by its keyExtremely fast lookups

ArrayList (in java.util)
An “extensible” array
Can append or insert elements,
access i’th element, reset to 0
length
Lookup is slower than an array

Can lookup data by its key
Can get an iteration of the keys
or values
Storage allocated as needed
but works best if you can
anticipate need and tell it at
creation time.

HashMap Example

Create a HashMap of numbers, using the names
of the numbers as keys:

Map<String, Integer> numbers
= new HashMap<String, Integer>();

numbers.put("one", new Integer(1));
numbers.put("two", new Integer(2));
numbers.put("three", new Integer(3));

To retrieve a number:
Integer n = numbers.get("two");

Returns null if the HashMap doesn’t contain key
Can use numbers.containsKey(key) to check this

20/08/2009

9

Generics and Autoboxing
Old (pre-Java 5)

Map numbers = new HashMap();
numbers.put("one", new Integer(1));
Integer s = (Integer)numbers.get("one");

New (generics)
Map<String, Integer> numbers =
new HashMap<String, Integer>();
numbers.put("one", new Integer(1));
Integer s = numbers.get("one");

New (generics + autoboxing)
Map<String, Integer> numbers =
new HashMap<String, Integer>();
numbers.put("one", 1);
int s = numbers.get("one");

Experimentation
All of this adds up to some pretty confusing stuff you’ll need to
learn!

Don’t be afraid to experiment by
writing little code fragments and
seeing if they compile and what
they dothey do.

But don’t write random code hoping
that it might work by some miracle.

Examples in the Sun online JDK manual can be really helpful!
Cut and paste from Sun JDK manual is not considered to be a violation
of academic integrity.
So go for it!

Debugging

Debugging
Do not just make random changes, hoping
something will work. This never works.
Think about what could cause the observed behavior
Isolate the bug. Focus on the first thing that goes
wrong.

An IDE helps by providing a Debugging Mode
Can set breakpoints, step through the program while
watching chosen variables
When program pauses at breakpoint, or dies, can look
at values of variables it was using

