Course Review & A Few Unanswered Questions

Lecture 25
CS2110 – Fall 2008

Announcements

- Final Exam
 - Thursday, Dec 18
 - 2 - 4:30pm
 - Uris Auditorium

- Review Sessions
 - Wednesday, Dec 17
 - 7:30 - 9pm and 9 - 10:30pm
 - Upson B17
 - Both sessions the same
 - Maybe an extra one Tuesday of next week - watch web site for an announcement

- For exam conflicts:
 - Notify Kelly Patwell today
 - You must provide
 - Your entire exam schedule
 - Include the course numbers

- Definition of exam conflict:
 - Two exams at the same time or
 - Three or more exams within 24 hours

- A5 due Monday, Dec 8, 11:59pm
 - Sorry, no more extensions

Announcements

- Check the course website for additional announcements as the final exam approaches
- Consulting ends this week
- Office hours continue until Final Exam
- There may be changes (TAs have exams, too)
- Any changes will be announced on the course website

- Jealous of the glamorous life of a CS consultant?
- We’re recruiting next-semester consultants for CS1110 and CS2110
- Interested students should fill out an application, available in 303 Upson

Course Overview

- Programming concepts
 - We use Java, but the goal is to understand the ideas rather than to become a Java expert
 - Recursion
 - Object-Oriented Programming
 - Interfaces
 - Graphical User Interfaces (GUIs)

- Data structure concepts
 - The goal here is to develop skill with a set of tools that are widely useful
 - Induction
 - Asymptotic analysis (big-O)
 - Arrays, Trees, and Lists
 - Searching & Sorting
 - Stacks & Queues
 - Priority Queues
 - Sets & Dictionaries
 - Graphs

Programming Concepts

- Recursion
 - Stack frames
 - Exceptions

- Object-oriented programming
 - Classes and objects
 - Primitive vs. reference types
 - Dynamic vs. static types
 - Subtypes and Inheritance
 - Overriding
 - Shadowing
 - Overloading
 - Upcasting & downcasting
 - Inner & anonymous classes

- Interfaces
 - Type hierarchy vs. class hierarchy
 - The Comparable interface
 - Iterators & Iterable

- GUIs
 - Components, Containers, & Layout Managers
 - Events & listeners
Data Structure Concepts

- Induction
- Grammars & parsing
- Asymptotic analysis (big-O)
- Solving recurrences
- Lower bounds on sorting
- Basic building blocks
 - Arrays
 - Lists
 - Singly- and doubly-linked
 - Trees
 - Binary Search Trees (BSTs)
- Searching
 - Linear- vs. binary-search
- Sorting
 - Insertion-, Selection-, Merge-, Quick-, and Heapsort
- Useful ADTs (& implementations)
 - Stacks & Queues
 - Arrays & lists
 - Priority Queues
 - Heaps
 - Array of queues
 - Sets & Dictionaries
 - Bit vectors (for Sets)
 - Stacks & lists
 - Hashing & Hashtables
 - BSTs (& balanced BSTs)
 - Graphs...

Overview of Graphs

- Mathematical definition of a graph (directed, undirected)
- Representations
 - Adjacency matrix
 - Adjacency list
- Topological sort
- Coloring & planarity
- Searching (BFS & DFS)
- Dijkstra’s shortest path algorithm
- Minimum Spanning Trees (MSTs)
 - Prim’s algorithm (growing a single tree)
 - Kruskal’s algorithm (build a forest by adding edges in order)

Complexity of Bounded-Degree Euclidean MST

- The Euclidean MST (Minimum Spanning Tree) problem:
 - Given n points in the plane, determine the MST
 - Can be solved in O(n log n) time by first building the Delaunay Triangulation
 - Known to be NP-hard for \(d = 3 \)
 - O(n log n) algorithm for \(d = 5 \) or greater
 - Can show Euclidean MST has degree \(\leq 5 \)
 - Unknown for \(d = 4 \)

Complexity of Euclidean MST in \(\mathbb{R}^d \)

- Given \(n \) points in dimension \(d \), determine the MST
 - Is there an algorithm with runtime close to the \(\Omega(n \log n) \) lower bound?
 - Can solve in time \(O(n \log n) \) for \(d = 2 \)
 - For large \(d \), it appears that runtime approaches \(O(n^3) \)
 - Best algorithms for general graphs run in time linear in \(m = \) number of edges
 - But for Euclidean distances on points, the number of edges is \(n(n-1)/2 \)

Some Unsolved Problems

- Complexity of B+Y Sorting?
 - How long does it take to sort an \(n \)-by-\(n \) table of numbers?
 - O(n^2 log n) because there are \(n^2 \) numbers in the table
 - What if it’s an addition table?
 - Shouldn’t it be easier to sort than an arbitrary set of \(n^2 \) numbers?
 - There is a technique that uses just O(n^2) comparisons [Fredman 76]
 - But it uses O(n^2 log n) time to decide which comparisons to use [Lambert 92]
 - This problem is closely related to the problem of sorting the vertices of a line arrangement

O(n^2) Time for X+Y Sorting?
3SUM in Subquadratic Time?

- Given a set of \(n \) integers, are there three that sum to zero?
- \(O(n^2) \) algorithms are easy (e.g., use a hashtable)
- Are there better algorithms?
- This problem is closely related to many other problems [Gajentaan & Overmars 95]
- Given \(n \) lines in the plane, are there 3 lines that intersect in a point?
- Given \(n \) triangles in the plane, does their union have a hole?

3-Colorability of Great-Circle Graphs?

- Build a graph by drawing great-circles on a sphere
- Create a vertex for each intersection
- Assume no three great circles intersect in a point
- Is the resulting graph 3-colorable?
- All arrangements for up to 11 great circles have been verified as 3-colorable
- For general circles on the sphere (or for circles on the plane) the graph can require 4 colors

Winning Strategies for the Parity Game?

- Played on a directed graph with nodes 0, 1, 2, ..., \(n-1 \)
- Start with a pebble on node 0
- Players Steven and Todd alternately choose edges along which to push the pebble
- They play forever...
- Steven wins if the least-numbered vertex visited infinitely often is even
- Todd wins if the least-numbered vertex visited infinitely often is odd
- It is known that for any graph, either Steven or Todd has a winning strategy – but can you determine which?
- Equivalent to a major open problem in logic

The Big Question: Is P=NP?

- \(P \) is the class of problems that can be solved in polynomial time
 - These problems are considered tractable
 - Problems that are not in \(P \) are considered intractable
- \(NP \) represents problems that, for a given solution, the solution can be checked in polynomial time
 - But finding the solution may be hard
- For ease of comparison, problems are usually stated as yes-or-no questions
- Examples
 - Given a weighted graph \(G \) and a bound \(k \), does \(G \) have a spanning tree of weight at most \(k \)?
 - This is in \(P \) because we have an algorithm for the MST with runtime \(O(m + n \log n) \)
 - Given graph \(G \), does \(G \) have a Hamiltonian cycle (a simple cycle that visits all vertices)?
 - This is in \(NP \) because, given a possible solution, we can check in polynomial time that it's a cycle and that it visits all vertices exactly once

Current Status: P vs. NP

- It's easy to show that \(P \subseteq NP \)
- Most researchers believe that \(P \neq NP \)
 - But at present, no proof
 - We do have a large collection of \(NP \)-complete problems
 - If any \(NP \)-complete problem has a polynomial time algorithm, then they all do
- A problem \(B \) is \(NP \)-complete if
 1. it is in \(NP \)
 2. any other problem in \(NP \) reduces to it efficiently
- Thus by making use of an imaginary fast subroutine for \(B \), any problem in \(NP \) could be solved in polynomial time
 - the Boolean satisfiability problem is \(NP \)-complete [Cook 1971]
 - many useful problems are \(NP \)-complete [Karp 1972]
 - By now thousands of problems are known to be \(NP \)-complete

Some NP-Complete Problems

- Graph coloring: Given graph \(G \) and bound \(k \), is \(G \) \(k \)-colorable?
- Planar \(3 \)-coloring: Given planar graph \(G \), is \(G \) \(3 \)-colorable?
- Traveling salesperson: Given weighted graph \(G \) and bound \(k \), is there a cycle of cost \(\leq k \) that visits each vertex at least once?
- Hamiltonian cycle: Given graph \(G \), is there a cycle that visits each vertex exactly once?
- Knapsack: Given a set of \(i \) items with weights \(w_i \) and values \(v_i \), and numbers \(W \) and \(V \), does there exist a subset of at most \(W \) items whose total value is at least \(V \)?
- What if you really need an algorithm for an \(NP \)-complete problem?
 - Some special cases can be solved in polynomial time
 - If you're lucky, you have such a special case
 - Otherwise, once a problem is shown to be \(NP \)-complete, the best strategy is to start looking for an approximation
- For a while, a new proof showing a problem \(NP \)-complete was enough for a paper
- Nowadays, no one is interested unless the result is somehow unexpected
Good luck on the final!
Thanks for an enjoyable semester!
Have a great winter break!

😊