Representations of Graphs

Adjacency List

Adjacency Matrix

```
Representations of Graphs

Adjacency List

Adjacency Matrix

```

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Adjacency Matrix or Adjacency List?

- \(n \) = number of vertices
- \(m \) = number of edges
- \(d(u) \) = outdegree of \(u \)

- **Adjacency Matrix**
 - Uses space \(O(n^2) \)
 - Can iterate over all edges in time \(O(n^2) \)
 - Can answer “Is there an edge from \(u \) to \(v \)?” in \(O(1) \) time
 - Better for **dense** graphs (lots of edges)

- **Adjacency List**
 - Uses space \(O(m+n) \)
 - Can iterate over all edges in time \(O(m+n) \)
 - Can answer “Is there an edge from \(u \) to \(v \)?” in \(O(d(u)) \) time
 - Better for **sparse** graphs (fewer edges)
Shortest Paths in Graphs

• Finding the shortest (min-cost) path in a graph is a problem that occurs often
 – Find the shortest route between Ithaca and West Lafayette, IN
 – Result depends on our notion of cost
 • Least mileage
 • Least time
 • Cheapest
 • Least boring
 – All of these “costs” can be represented as edge weights

• How do we find a shortest path?
Dijkstra's Algorithm

dijkstra(s) {
 \(D[s] = 0; \ D[t] = c(s,t), \ t \neq s; \)
 mark s;
 while (some vertices are unmarked) {
 v = unmarked node with smallest D;
 mark v;
 for (each w adjacent to v) {
 \(D[w] = \min(D[w], D[v] + c(v,w)); \)
 }
 }
}
Proof of Correctness

The following are invariants of the loop:

• For $u \in X$, $D(u) = d(s,u)$
• For $u \in X$ and $v \not\in X$, $d(s,u) \leq d(s,v)$
• For all u, $D(u)$ is the length of the shortest path from s to u such that all nodes on the path (except possibly possibly u) are in X

Implementation:

• Use a priority queue for the nodes not yet taken – priority is $D(u)$
Shortest Paths for Unweighted Graphs – A Special Case

- Use breadth-first search
- Time is $O(n + m)$ in adj list representation, $O(n^2)$ in adj matrix representation
Undirected Trees

• An undirected graph is a *tree* if there is exactly one simple path between any pair of vertices
Facts About Trees

• $|E| = |V| - 1$
• connected
• no cycles

In fact, any two of these properties imply the third, and imply that the graph is a tree
Spanning Trees

A spanning tree of a connected undirected graph \((V,E)\) is a subgraph \((V,E')\) that is a tree.
Spanning Trees

A *spanning tree* of a connected undirected graph \((V,E)\) is a subgraph \((V,E')\) that is a tree:

- Same set of vertices \(V\)
- \(E' \subseteq E\)
- \((V,E')\) is a tree
Finding a Spanning Tree

A subtractive method

• Start with the whole graph – it is connected

• If there is a cycle, pick an edge on the cycle, throw it out – the graph is still connected (why?)

• Repeat until no more cycles
Finding a Spanning Tree

A subtractive method

• Start with the whole graph – it is connected

• If there is a cycle, pick an edge on the cycle, throw it out – the graph is still connected (why?)

• Repeat until no more cycles
Finding a Spanning Tree

A subtractive method

• Start with the whole graph – it is connected

• If there is a cycle, pick an edge on the cycle, throw it out – the graph is still connected (why?)

• Repeat until no more cycles
Finding a Spanning Tree

An additive method

- Start with no edges – there are no cycles
- If more than one connected component, insert an edge between them – still no cycles (why?)
- Repeat until only one component
Finding a Spanning Tree

An additive method

• Start with no edges – there are no cycles

• If more than one connected component, insert an edge between them – still no cycles (why?)

• Repeat until only one component
Finding a Spanning Tree

An additive method

• Start with no edges – there are no cycles
• If more than one connected component, insert an edge between them – still no cycles (why?)
• Repeat until only one component
Finding a Spanning Tree

An additive method

- Start with no edges – there are no cycles
- If more than one connected component, insert an edge between them – still no cycles (why?)
- Repeat until only one component
Finding a Spanning Tree

An additive method

• Start with no edges – there are no cycles
• If more than one connected component, insert an edge between them – still no cycles (why?)
• Repeat until only one component
Finding a Spanning Tree

An additive method

- Start with no edges – there are no cycles
- If more than one connected component, insert an edge between them – still no cycles (why?)
- Repeat until only one component
Minimum Spanning Trees

- Suppose edges are weighted, and we want a spanning tree of *minimum cost* (sum of edge weights)

- Useful in network routing & other applications
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it.
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it.
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it.

Kruskal's algorithm

![Graph Diagram]
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it.

Kruskal's algorithm
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it.

Kruskal's algorithm
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it.

Kruskal's algorithm
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm
3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)
3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)
3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)
3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)
3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)
3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)
3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)
3 Greedy Algorithms

All 3 greedy algorithms give the same minimum spanning tree (assuming distinct edge weights)
Prim’s Algorithm

```
prim(s) {
    D[s] = 0; mark s; //start vertex
    while (some vertices are unmarked) {
        v = unmarked vertex with smallest D;
        mark v;
        for (each w adj to v) {
            D[w] = min(D[w], c(v,w));
        }
    }
}
```

- $O(n^2)$ for adj matrix
 - While-loop is executed n times
 - For-loop takes $O(n)$ time

- $O(m + n \log n)$ for adj list
 - Use a PQ
 - Regular PQ produces time $O(n + m \log m)$
 - Can improve to $O(m + n \log n)$ using a fancier heap
Greedy Algorithms

- These are examples of Greedy Algorithms
- The Greedy Strategy is an algorithm design technique
 - Like Divide & Conquer
- Greedy algorithms are used to solve optimization problems
 - The goal is to find the best solution
- Works when the problem has the greedy-choice property
 - A global optimum can be reached by making locally optimum choices
- Example: the Change Making Problem: Given an amount of money, find the smallest number of coins to make that amount
 - Solution: Use a Greedy Algorithm
 - Give as many large coins as you can
- This greedy strategy produces the optimum number of coins for the US coin system
- Different money system ⇒ greedy strategy may fail
 - Example: old UK system
Similar Code Structures

```java
while (some vertices are unmarked) {
    v = best of unmarked vertices;
    mark v;
    for (each w adj to v)
        update w;
}
```

- **bfs**
 - best: next in queue
 - update: \(D[w] = D[v]+1 \)

- **dijkstra**
 - best: next in PQ
 - update: \(D[w] = \min D[w], D[v]+c(v,w) \)

- **prim**
 - best: next in PQ
 - update: \(D[w] = \min D[w], c(v,w) \)