Announcements

- Prelim 2
 - Tuesday, Nov 18, 7:30-9pm
 - Uris Auditorium

- Exam conflicts
 - Email Kelly Patwell ASAP

- Old exams are available for review on the course website

Graph Definitions

- A directed graph (or digraph) is a pair (V, E) where
 - V is a set
 - E is a set of ordered pairs (u, v) where $u, v \in V$
 - Usually require $u = v$ (i.e., no self-loops)

- An element of V is called a vertex (pl. vertices) or node
- An element of E is called an edge or arc

- $|V| = \text{size of } V$, often denoted n
- $|E| = \text{size of } E$, often denoted m

Applications of Graphs

- Communication networks
- Routing and shortest path problems
- Commodity distribution (flow)
- Traffic control
- Resource allocation
- Geometric modeling
- ...
Example Directed Graph (Digraph)

\[V = \{a, b, c, d, e, f\} \]
\[E = \{(a, b), (a, c), (a, e), (b, c), (b, d), (b, e), (c, d), (c, f), (d, e), (d, f), (e, f)\} \]
\[|V| = 6, |E| = 11 \]

Example Undirected Graph

An undirected graph is just like a directed graph, except the edges are unordered pairs (sets) \(\{u, v\}\)

Example:

\[V = \{a, b, c, d, e, f\} \]
\[E = \{\{a, b\}, \{a, c\}, \{a, e\}, \{b, c\}, \{b, d\}, \{b, e\}, \{c, d\}, \{c, f\}, \{d, e\}, \{d, f\}, \{e, f\}\} \]

Some Graph Terminology

- Vertices \(u\) and \(v\) are called the **source** and **sink** of the directed edge \((u, v)\), respectively
- Vertices \(u\) and \(v\) are called the **endpoints** of \((u, v)\)
- Two vertices are **adjacent** if they are connected by an edge
- The **outdegree** of a vertex \(u\) in a directed graph is the number of edges for which \(u\) is the source
- The **indegree** of a vertex \(v\) in a directed graph is the number of edges for which \(v\) is the sink
- The **degree** of a vertex \(u\) in an undirected graph is the number of edges of which \(u\) is an endpoint

More Graph Terminology

- A **path** is a sequence \(v_0, v_1, v_2, ..., v_p\) of vertices such that \((v_i, v_{i+1}) \in E, 0 \leq i \leq p - 1\)
- The **length** of a path is its number of edges
 - In this example, the length is 5
- A **cycle** is a path \(v_0, v_1, v_2, ..., v_p\) such that \(v_0 = v_p\)
- A **cycle** is **simple** if it does not repeat any vertices except the first and last
- A graph is **acyclic** if it has no cycles
- A directed acyclic graph is called a **dag**

Is This a Dag?

- Intuition:
 - If it’s a dag, there must be a vertex with indegree zero – why?
 - This idea leads to an algorithm
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is This a Dag?

- Intuition:
 - If it’s a dag, there must be a vertex with indegree zero – why?
 - This idea leads to an algorithm
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Is This a Dag?

- Intuition:
 - If it’s a dag, there must be a vertex with indegree zero – why?
- This idea leads to an algorithm
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is This a Dag?

- Intuition:
 - If it’s a dag, there must be a vertex with indegree zero – why?
- This idea leads to an algorithm
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Is This a Dag?

- **Intuition:**
 - If it's a dag, there must be a vertex with indegree zero – why?

- This idea leads to an algorithm
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Topological Sort

- We just computed a topological sort of the dag
 - This is a numbering of the vertices such that all edges go from lower- to higher-numbered vertices

Useful in job scheduling with precedence constraints

Graph Coloring

- A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color

- How many colors are needed to color this graph?

Graph Coloring

- A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color

- How many colors are needed to color this graph?
 - 3
An Application of Coloring

- Vertices are jobs
- Edge \((u,v)\) is present if jobs \(u\) and \(v\) each require access to the same shared resource, and thus cannot execute simultaneously
- Colors are time slots to schedule the jobs
- Minimum number of colors needed to color the graph = minimum number of time slots required

Planarity

- A graph is planar if it can be embedded in the plane with no edges crossing

Detecting Planarity

Kuratowski’s Theorem

A graph is planar if and only if it does not contain a copy of \(K_5\) or \(K_{3,3}\) (possibly with other nodes along the edges shown)

The Four-Color Theorem

Every planar graph is 4-colorable
(Appel & Haken, 1976)
Bipartite Graphs

A directed or undirected graph is bipartite if the vertices can be partitioned into two sets such that all edges go between the two sets.

The following are equivalent:
- G is bipartite
- G is 2-colorable
- G has no cycles of odd length

Traveling Salesperson

Find a path of minimum distance that visits every city.

Representations of Graphs

Adjacency List
- Uses space $O(m + n)$
- Can iterate over all edges in time $O(m + n)$
- Can answer "Is there an edge from u to v?" in $O(d(u))$ time
- Better for sparse graphs (fewer edges)

Adjacency Matrix
- Uses space $O(n^2)$
- Can iterate over all edges in time $O(n^2)$
- Can answer "Is there an edge from u to v?" in $O(1)$ time
- Better for dense graphs (lots of edges)

Adjacency Matrix or Adjacency List?

Graph Algorithms

- Search
 - depth-first search
 - breadth-first search
- Shortest paths
 - Dijkstra's algorithm
- Minimum spanning trees
 - Prim's algorithm
 - Kruskal's algorithm
Depth-First Search

- Follow edges depth-first starting from an arbitrary vertex \(r \), using a stack to remember where you came from
- When you encounter a vertex previously visited, or there are no outgoing edges, retreat and try another path
- Eventually visit all vertices reachable from \(r \)
- If there are still unvisited vertices, repeat
- \(O(m) \) time
Breadth-First Search

- Same, except use a queue instead of a stack to determine which edge to explore next.
Suppose you have a US Airways route map with intercity distances. You want to know the shortest distance from Ithaca to every city served by US Airways.

This is known as the single-source shortest path problem.
Shortest Paths

Single-source shortest path problem: Given a graph with edge weights \(w(u,v) \) and a designated vertex \(s \), find the shortest path from \(s \) to every other vertex (length of a path = sum of edge weights).

Dijkstra’s Algorithm

- Let \(X = \{s\} \)
 - \(X \) is the set of nodes for which we have already determined the shortest path
- For each node \(u \not\in X \), define \(D(u) = w(s,u) \)
 - \(D(2) = 2.4 \)
 - \(D(3) = \infty \)
 - \(D(4) = 1.5 \)

- Find \(u \not\in X \) such that \(D(u) \) is minimum, add it to \(X \)
 - at that point, \(d(s,u) = D(u) \)
- For each node \(v \not\in X \) such that \((u,v) \in E \), if \(D(u) + w(u,v) < D(v) \), set \(D(v) = D(u) + w(u,v) \)
 - \(D(2) = 2.4 \)
 - \(D(3) = \infty \)
 - \(D(4) = 1.5 \)
Dijkstra's Algorithm

• Find $u \notin X$ such that $D(u)$ is minimum, add it to X
 – at that point, $d(s,u) = D(u)$
• For each node $v \notin X$ such that $(u,v) \in E$, if $D(u) + w(u,v) < D(v)$, set $D(v) = D(u) + w(u,v)$
 – $D(2) = 2.4 \not< 1.6 = d(1,2)$
 – $D(3) = 4.6 \not< 2.5 = d(1,3)$
 – $D(4) = 1.5 = d(1,4)$

Proof of correctness – show that the following are invariants of the loop:
• For $u \in X$, $D(u) = d(s,u)$
• For $u \in X$ and $v \notin X$, $d(s,u) \leq d(s,v)$
• For all u, $D(u)$ is the length of the shortest path from s to u such that all nodes on the path (except possibly u) are in X

Implementation:
• Use a priority queue for the nodes not yet taken – priority is $D(u)$
Complexity

• Every edge is examined once when its source is taken into X

• A vertex may be placed in the priority queue multiple times, but at most once for each incoming edge

• Number of insertions and deletions into priority queue = \(m + 1 \), where \(m = |E| \)

• Total complexity = \(O(m \log m) \)

Conclusion

• There are faster but much more complicated algorithms for single-source, shortest-path problem that run in time \(O(n \log n + m) \) using something called Fibonacci heaps

• It is important that all edge weights be nonnegative – Dijkstra's algorithm does not work otherwise, we need a more complicated algorithm called Warshall's algorithm

• Learn about this and more in CS4820

Don’t forget to vote!