Abstract Data Types (ADTs)

- A method for achieving abstraction for data structures and algorithms
- ADT = model + operations
- Describes what each operation does, but not how it does it
- An ADT is independent of its implementation
- In Java, an interface corresponds well to an ADT
 - The interface describes the operations, but says nothing at all about how they are implemented
- Example: Stack interface/ADT
  ```java
  public interface Stack {
      public void push(Object x);
      public Object pop();
      public Object peek();
      public boolean isEmpty();
      public void clear();
  }
  ```

Queues & Priority Queues

- ADT Queue
 - Operations:
 - void add(Object x);
 - Object poll();
 - Object peek();
 - boolean isEmpty();
 - void clear();
 - Where used:
 - Simple job scheduler (e.g., print queue)
 - Wide use within other algorithms

- ADT PriorityQueue
 - Operations:
 - void insert(Object x);
 - Object getMax();
 - Object peekAtMax();
 - boolean isEmpty();
 - void clear();
 - Where used:
 - Job scheduler for OS
 - Event-driven simulation
 - Can be used for sorting
 - Wide use within other algorithms

Sets

- ADT Set
 - Operations:
 - void insert(Object element);
 - boolean contains(Object element);
 - void remove(Object element);
 - boolean isEmpty();
 - void clear();
 - Where used:
 - Wide use within other algorithms
 - Note: no duplicates allowed
 - A “set” with duplicates is sometimes called a multiset or bag

Dictionaries

- ADT Dictionary (aka Map)
 - Operations:
 - void insert(Object key, Object value);
 - void update(Object key, Object value);
 - Object find(Object key);
 - void remove(Object key);
 - boolean isEmpty();
 - void clear();
 - Think of: key = word; value = definition
 - Where used:
 - Symbol tables
 - Wide use within other algorithms

Data Structure Building Blocks

- These are implementation “building blocks” that are often used to build more-complicated data structures
 - Arrays
 - Linked Lists
 - Singly linked
 - Doubly linked
 - Binary Trees
 - Graphs
 - Adjacency matrix
 - Adjacency list
Array Implementation of Stack

```java
class ArrayStack implements Stack {
    private Object[] array; //Array that holds the Stack
    private int index = 0; //First empty slot in Stack
    public ArrayStack(int maxSize) {
        array = new Object[maxSize];
    }
    public void push(Object x) {
        array[index++] = x;
    }
    public Object pop() {
        return array[--index];
    }
    public Object peek() {
        return array[index-1];
    }
    public boolean isEmpty() {
        return index == 0;
    }
    public void clear() {
        index = 0;
    }
}
```

Question: What can go wrong?

Linked List Implementation of Stack

```java
class ListStack implements Stack {
    private Node head; //Head of list that holds the Stack
    public void push(Object x) {
        head = new Node(x, head);
    }
    public Object pop() {
        Node temp = head;
        head = head.next;
        return temp.data;
    }
    public Object peek() {
        return head.data;
    }
    public boolean isEmpty() {
        return head == null;
    }
    public void clear() {
        head = null;
    }
}
```

O(1) worst-case time for each operation

Note that array implementation can overflow, but the linked list version cannot

Queue Implementations

- Possible implementations
 - Linked List
 - Array with head always at A[0]
 - (can overflow)
 - Array with wraparound
 - (can overflow)

- Recall: operations are add, poll, peek...
 - For linked-list
 - All operations are O(1)
 - For array with head at A[0]
 - poll takes time O(n)
 - Other ops are O(1)
 - Can overflow
 - For array with wraparound
 - All operations are O(1)
 - Can overflow

A Queue From 2 Stacks

- Add pushes onto stack A
- Poll pops from stack B
- If B is empty, move all elements from stack A to stack B
- Some individual operations are costly, but still O(1) time per operations over the long run

Dealing with Overflow

- For array implementations of stacks and queues, use table doubling
- Check for overflow with each insert op
- If table will overflow,
 - Allocate a new table twice the size
 - Copy everything over
- The operations that cause overflow are expensive, but still constant time per operation over the long run (proof later)

Goal: Design a Dictionary (aka Map)

- Operations
 - Array implementation: Using an array of (key,value) pairs
 - void insert(key, value)
 - void update(key, value)
 - Object find(key)
 - void remove(key)
 - boolean isEmpty()
 - void clear()

 Unsororted Sorted
 insert O(1) O(n)
 update O(n) O(log n)
 find O(n) O(log n)
 remove O(n) O(n)

 n is the number of items currently held in the dictionary
Hashing

- Idea: compute an array index via a hash function h
- U is the universe of keys
- $h: U \rightarrow \{0, \ldots, m-1\}$ where $m = \text{hash table size}$
- Usually $|U|$ is much bigger than m, so collisions are possible (two elements with the same hash code)
- h should
 - be easy to compute
 - avoid collisions
 - have roughly equal probability for each table position

Typical situation:
- $U = \text{all legal identifiers}$

Typical hash function:
- h converts each letter to a number, then compute a function of these numbers

A Hashing Example

- Suppose each word below has the following hash code
- How do we resolve collisions?
 - use chaining: each table position is the head of a list
 - for any particular problem, this might work terribly
 - In practice, using a good hash function, we can assume each position is equally likely

Typical situation:
- $U = \text{all legal identifiers}$

Typical hash function:
- h converts each letter to a number, then compute a function of these numbers

A Hashing Example

<table>
<thead>
<tr>
<th>Word</th>
<th>Hash Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>jan</td>
<td>7</td>
</tr>
<tr>
<td>feb</td>
<td>0</td>
</tr>
<tr>
<td>mar</td>
<td>5</td>
</tr>
<tr>
<td>apr</td>
<td>2</td>
</tr>
<tr>
<td>may</td>
<td>4</td>
</tr>
<tr>
<td>jun</td>
<td>7</td>
</tr>
<tr>
<td>jul</td>
<td>3</td>
</tr>
<tr>
<td>aug</td>
<td>7</td>
</tr>
<tr>
<td>sep</td>
<td>2</td>
</tr>
<tr>
<td>oct</td>
<td>5</td>
</tr>
</tbody>
</table>

Analysis for Hashing with Chaining

- Analyzed in terms of load factor $\lambda = n/m = (\text{items in table})/\text{table size}$
- We count the expected number of probes (key comparisons)
- Goal: Determine expected number of probes for an unsuccessful search
- Expected number of probes for an unsuccessful search = average number of items per table position = $n/m = \lambda$
- Expected number of probes for a successful search = $1 + \lambda/2 = O(\lambda)$
- Worst case is $O(n)$

Table Doubling

- We know each operation takes time $O(\lambda)$ where $\lambda = n/m$
- So it gets worse as n gets large relative to m
- Table Doubling:
 - Set a bound for λ, (call it λ_0)
 - Whenever λ reaches this bound:
 - Create a new table twice as big
 - Then rehash all the data
 - As before, operations usually take time $O(1)$
 - But sometimes we copy the whole table

Analysis of Table Doubling

- Suppose we reach a state with n items in a table of size m and that we have just completed a table doubling

<table>
<thead>
<tr>
<th>Copying Work</th>
<th>n</th>
<th>n/2</th>
<th>n/4</th>
<th>n/8</th>
<th>\ldots</th>
<th>$2n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everything has just been copied</td>
<td>n inserts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Half were copied previously</td>
<td>n/2 inserts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Half of those were copied previously</td>
<td>n/4 inserts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total work</td>
<td>$n + n/2 + n/4 + \ldots + 2n$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis of Table Doubling, Cont’d

- Total number of insert operations needed to reach current table = copying work + initial insertions of items = $2n + n = 3n$ inserts
- Each insert takes expected time $O(\lambda_0)$ or $O(1)$, so total expected time to build entire table is $O(n)$
- Thus, expected time per operation is $O(1)$
- Disadvantages of table doubling:
 - Worst-case insertion time of $O(n)$ is definitely achieved (but rarely)
 - Thus, not appropriate for time critical operations
Java Hash Functions

- Most Java classes implement the `hashCode()` method.
- `hashCode()` returns an int.
- Java’s `HashMap` class uses \(h(X) = X \text{.hashCode()} \mod m \)
- `h(X)` in detail:
  ```java
  int hash = X.hashCode();
  int index = (hash & 0x7FFFFFFF) % m;
  ```
- What `hashCode()` returns:
 - Integer: uses the int value
 - Float: converts to a bit representation and treats it as an int
 - Short Strings: 37*previous + value of next character
 - Long Strings: sample of 8 characters; 39*previous + next value

hashCode() Requirements

- Contract for `hashCode()` method:
 - Whenever it is invoked in the same object, it must return the same result.
 - Two objects that are equal (in the sense of `.equals(...)`) must have the same hash code.
 - Two objects that are not equal should return different hash codes, but are not required to do so (i.e., collisions are allowed).

Hashtables in Java

- `java.util.HashMap`
- `java.util.HashSet`
- `java.util.Hashtable`
- Use chaining
- Initial (default) size = 101
- Load factor \(\lambda_0 = 0.75 \)
- Uses table doubling \(2^{\text{previous}+1} \)
- A node in each chain looks like this:
  ```
  hashCode    key       value    next
  ---        ----       ------    ----
  original hashCode (before mod m) Allows faster rehashing and (possibly) faster key comparison
  ```

Linear & Quadratic Probing

- These are techniques in which all data is stored directly within the hash table array.
- Quadratic Probing
 - Similar to Linear Probing in that data is stored within the table.
 - Probe at \(h(X) \), then at
 - \(h(X) + 1 \)
 - \(h(X) + 4 \)
 - \(h(X) + 9 \)
 - \(h(X)^2 \% m \)
 - Works well when \(\lambda < 0.5 \)
 - Table size is prime

Universal Hashing

- Choose a hash function at random from a large parameterized family of hash functions (e.g., \(h(x) = ax + b \), where \(a \) and \(b \) are chosen at random).
- With high probability, it will be just as good as any custom-designed hash function you can come up with.

hashCode() and equals()

- We mentioned that the hash codes of two equal objects must be equal — this is necessary for hashtable-based data structures such as `HashMap` and `HashSet` to work correctly.
- In Java, this means if you override `Object.equals()`, you had better also override `Object.hashCode()`
- But how???
hashCode() and equals()

class Identifier {
 String name;
 String type;

 public boolean equals(Object obj) {
 if (obj == null) return false;
 Identifier id;
 try {
 id = (Identifier)obj;
 } catch (ClassCastException cce) {
 return false;
 }
 return name.equals(id.name) && type.equals(id.type);
 }
}

hashCode() and equals()

class TreeNode {
 TreeNode left, right;
 String datum;

 public boolean equals(Object obj) {
 if (obj == null || !(obj instanceof TreeNode)) return false;
 TreeNode t = (TreeNode)obj;
 boolean lEq = (left != null) ? left.equals(t.left) : t.left == null;
 boolean rEq = (right != null) ? right.equals(t.right) : t.right == null;
 return datum.equals(t.datum) && lEq && rEq;
 }

 public int hashCode() {
 int lHC = (left != null) ? left.hashCode() : 298;
 int rHC = (right != null) ? right.hashCode() : 377;
 return 37 * datum.hashCode() + 611 * lHC - 43 * rHC;
 }
}

Dictionary Implementations

- **Ordered Array**
 - Better than unordered array because Binary Search can be used

- **Unordered Linked List**
 - Ordering doesn't help

- **Hashtables**
 - O(1) expected time for Dictionary operations