3. Find \(x \).

\[\text{Here it is} \]

Searching, Sorting, and Asymptotic Complexity

Lecture 12
CS2110 – Fall 2008
Announcements

• Prelim 1
 ▪ Thursday, October 16, 7:30 - 9pm, Uris Auditorium
 ▪ Topics
 ▪ all material up to (but not including) searching and sorting (this week’s topics)
 ▪ including interfaces & inheritance

• Exam conflicts
 ▪ Email Kelly Patwell ASAP

• A3 due Friday, October 10, 11:59pm

• Prelim 1 review sessions
 ▪ Wednesday 10/15, 7:30-9pm & 9-10:30pm, Upson B17 (sessions are identical)
 ▪ See Exams on course website for more information
 ▪ Individual appointments are available if you cannot attend the review sessions (email one TA to arrange appointment)

• Old exams are available for review on the course website
What Makes a Good Algorithm?

• Suppose you have two possible algorithms or data structures that basically do the same thing; which is *better*?

• Well… what do we mean by *better*?
 ▪ Faster?
 ▪ Less space?
 ▪ Easier to code?
 ▪ Easier to maintain?
 ▪ Required for homework?

• How do we measure time and space for an algorithm?
Sample Problem: Searching

• Determine if a *sorted* array of integers contains a given integer
• First solution: Linear Search (check each element)

```java
static boolean find(int[] a, int item) {
    for (int i = 0; i < a.length; i++) {
        if (a[i] == item) return true;
    }
    return false;
}
```
Sample Problem: Searching

- Determine if a *sorted* array of integers contains a given integer
- First solution: Linear Search (check each element)

```java
static boolean find(int[] a, int item) {
    for (int i = 0; i < a.length; i++) {
        if (a[i] == item) return true;
    }
    return false;
}
```

```java
static boolean find(int[] a, int item) {
    for (int x : a) {
        if (x == item) return true;
    }
    return false;
}
```
Sample Problem: Searching

Second solution: Binary Search

```java
static boolean find (int[] a, int item) {
    int low = 0;
    int high = a.length - 1;
    while (low <= high) {
        int mid = (low + high)/2;
        if (a[mid] < item)
            low = mid + 1;
        else if (a[mid] > item)
            high = mid - 1;
        else return true;
    }
    return false;
}
```
Linear Search vs Binary Search

• Which one is better?
 ▪ Linear Search is easier to program
 ▪ But Binary Search is faster… isn’t it?

• How do we measure to show that one is faster than the other
 ▪ Experiment?
 ▪ Proof?
 ▪ Which inputs do we use?

• Simplifying assumption #1: Use the size of the input rather than the input itself
 ▪ For our sample search problem, the input size is \(n+1 \) where \(n \) is the array size

• Simplifying assumption #2: Count the number of “basic steps” rather than computing exact times
One Basic Step = One Time Unit

• Basic step:
 ▪ input or output of a scalar value
 ▪ accessing the value of a scalar variable, array element, or field of an object
 ▪ assignment to a variable, array element, or field of an object
 ▪ a single arithmetic or logical operation
 ▪ method invocation (not counting argument evaluation and execution of the method body)

• For a conditional, count number of basic steps on the branch that is executed

• For a loop, count number of basic steps in loop body times the number of iterations

• For a method, count number of basic steps in method body (including steps needed to prepare stack-frame)
Runtime vs Number of Basic Steps

• But is this cheating?
 ▪ The runtime is not the same as the number of basic steps
 ▪ Time per basic step varies depending on computer, on compiler, on details of code…

• Well…yes, in a way
 ▪ But the number of basic steps is proportional to the actual runtime

• Which is better?
 ▪ n or \(n^2 \) time?
 ▪ 100 n or \(n^2 \) time?
 ▪ 10,000 n or \(n^2 \) time?

• As \(n \) gets large, multiplicative constants become less important

• Simplifying assumption #3: Ignore multiplicative constants
Using Big-O to Hide Constants

- We say \(f(n) \) is order of \(g(n) \) if \(f(n) \) is bounded by a constant times \(g(n) \).
- Notation: \(f(n) \) is \(O(g(n)) \).
- Roughly, \(f(n) \) is \(O(g(n)) \) means that \(f(n) \) grows like \(g(n) \) or slower, to within a constant factor.
- "Constant" means fixed and independent of \(n \).

Example: \(n^2 + n \) is \(O(n^2) \)

- We know \(n \leq n^2 \) for \(n \geq 1 \).
- So \(n^2 + n \leq 2n^2 \) for \(n \geq 1 \).
- So by definition, \(n^2 + n \) is \(O(n^2) \) for \(c=2 \) and \(N=1 \).

Formal definition: \(f(n) \) is \(O(g(n)) \) if there exist constants \(c \) and \(N \) such that for all \(n \geq N \), \(f(n) \leq c \cdot g(n) \).
To prove that $f(n)$ is $O(g(n))$:

- Find an N and c such that $f(n) \leq c \cdot g(n)$ for all $n \geq N$
- We call the pair (c, N) a *witness pair* for proving that $f(n)$ is $O(g(n))$
Claim: $100n + \log n$ is $O(n)$

We know $\log n \leq n$ for $n \geq 1$

So $100n + \log n \leq 101n$

for $n \geq 1$

So by definition,

$100n + \log n$ is $O(n)$

for $c = 101$ and $N = 1$

Claim: $\log_B n$ is $O(\log_A n)$

since $\log_B n$ is $(\log_B A)(\log_A n)$

Question: Which grows faster: \sqrt{n} or $\log n$?
Big-O Examples

- Let $f(n) = 3n^2 + 6n - 7$
 - $f(n)$ is $O(n^2)$
 - $f(n)$ is $O(n^3)$
 - $f(n)$ is $O(n^4)$
 - ...
- $g(n) = 4n \log n + 34n - 89$
 - $g(n)$ is $O(n \log n)$
 - $g(n)$ is $O(n^2)$
- $h(n) = 20 \cdot 2^n + 40n$
 - $h(n)$ is $O(2^n)$
- $a(n) = 34$
 - $a(n)$ is $O(1)$

- Only the *leading* term (the term that grows most rapidly) matters
Problem-Size Examples

• Suppose we have a computing device that can execute 1000 operations per second; how large a problem can we solve?

<table>
<thead>
<tr>
<th></th>
<th>1 second</th>
<th>1 minute</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1000</td>
<td>60,000</td>
<td>3,600,000</td>
</tr>
<tr>
<td>$n \log n$</td>
<td>140</td>
<td>4893</td>
<td>200,000</td>
</tr>
<tr>
<td>n^2</td>
<td>31</td>
<td>244</td>
<td>1897</td>
</tr>
<tr>
<td>$3n^2$</td>
<td>18</td>
<td>144</td>
<td>1096</td>
</tr>
<tr>
<td>n^3</td>
<td>10</td>
<td>39</td>
<td>153</td>
</tr>
<tr>
<td>2^n</td>
<td>9</td>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>
Commonly Seen Time Bounds

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Description</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>constant</td>
<td>excellent</td>
</tr>
<tr>
<td>$O(\log n)$</td>
<td>logarithmic</td>
<td>excellent</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>linear</td>
<td>good</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>$n \log n$</td>
<td>pretty good</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>quadratic</td>
<td>OK</td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>cubic</td>
<td>maybe OK</td>
</tr>
<tr>
<td>$O(2^n)$</td>
<td>exponential</td>
<td>too slow</td>
</tr>
</tbody>
</table>
Worst-Case/Expected-Case Bounds

• We can’t possibly determine time bounds for all possible inputs of size n

• Simplifying assumption #4: Determine number of steps for either
 ▪ worst-case or
 ▪ expected-case

• Worst-case
 ▪ Determine how much time is needed for the *worst possible* input of size n

• Expected-case
 ▪ Determine how much time is needed *on average* for all inputs of size n
Our Simplifying Assumptions

- Use the size of the input rather than the input itself – \(n \)
- Count the number of “basic steps” rather than computing exact times
- Multiplicative constants and small inputs ignored (order-of, big-O)
- Determine number of steps for either
 - worst-case
 - expected-case
- These assumptions allow us to analyze algorithms effectively
Worst-Case Analysis of Searching

Linear Search

```java
static boolean find (int[] a, int item) {
    for (int i = 0; i < a.length; i++) {
        if (a[i] == item) return true;
    }
    return false;
}
worst-case time = \(O(n)\)
```

Binary Search

```java
static boolean find (int[] a, int item) {
    int low = 0;
    int high = a.length - 1;
    while (low <= high) {
        int mid = (low + high)/2;
        if (a[mid] < item)
            low = mid+1;
        else if (a[mid] > item)
            high = mid - 1;
        else return true;
    }
    return false;
}
worst-case time = \(O(\log n)\)
```
Comparison of Algorithms

Linear vs. Binary Search

Max Number of Comparisons

Number of Items in Array

- Linear Search
- Binary Search
Comparison of Algorithms

Linear vs. Binary Search

Max Number of Comparisons vs. Number of Items in Array

- Linear Search
- Binary Search
Comparison of Algorithms

Linear vs. Binary Search

Max Number of Comparisons vs. Number of Items in Array

- Linear Search
- Binary Search
Analysis of Matrix Multiplication

By convention, matrix problems are measured in terms of \(n \), the number of rows and columns

- Note that the input size is really \(2n^2 \), not \(n \)
- Worst-case time is \(O(n^3) \)
- Expected-case time is also \(O(n^3) \)

Code for multiplying \(n \)-by-\(n \) matrices \(A \) and \(B \):

```plaintext
for (i = 0; i < n; i++)
    for (j = 0; j < n; j++) {
        C[i][j] = 0;
        for (k = 0; k < n; k++)
            C[i][j] += A[i][k]*B[k][j];
    }
```
Remarks

• Once you get the hang of this, you can quickly zero in on what is relevant for determining asymptotic complexity
 ▪ For example, you can usually ignore everything that is not in the innermost loop. Why?

• Main difficulty:
 ▪ Determining runtime for recursive programs
Why Bother with Runtime Analysis?

• Computers are so fast these days that we can do whatever we want using just simple algorithms and data structures, right?

• Well...not really – data-structure/algorithm improvements can be a very big win

• Scenario:
 ▪ A runs in n^2 msec
 ▪ A' runs in $n^2/10$ msec
 ▪ B runs in $10 n \log n$ msec

• Problem of size $n=10^3$
 ▪ A: 10^3 sec \approx 17 minutes
 ▪ A': 10^2 sec \approx 1.7 minutes
 ▪ B: 10^2 sec \approx 1.7 minutes

• Problem of size $n=10^6$
 ▪ A: 10^9 sec \approx 30 years
 ▪ A': 10^8 sec \approx 3 years
 ▪ B: $2 \cdot 10^5$ sec \approx 2 days

1 day = $86,400$ sec $\approx 10^5$ sec
1,000 days \approx 3 years
Algorithms for the Human Genome

- Human genome
 \(= 3.5 \text{ billion nucleotides} \)
 \(\sim 1 \text{ Gb} \)

- @1 base-pair instruction/\(\mu \text{sec} \)
 - \(n^2 \rightarrow 388445 \text{ years} \)
 - \(n \log n \rightarrow 30.824 \text{ hours} \)
 - \(n \rightarrow 1 \text{ hour} \)
Limitations of Runtime Analysis

• Big-O can hide a very large constant
 ▪ Example: selection
 ▪ Example: small problems

• The specific problem you want to solve may not be the worst case
 ▪ Example: Simplex method for linear programming

• Your program may not be run often enough to make analysis worthwhile
 ▪ Example: one-shot vs. every day

• You may be analyzing and improving the wrong part of the program
 ▪ Very common situation
 ▪ Should use profiling tools
Summary

- **Asymptotic complexity**
 - Used to measure of time (or space) required by an algorithm
 - Measure of the algorithm, not the problem
- **Searching a sorted array**
 - Linear search: \(O(n)\) worst-case time
 - Binary search: \(O(\log n)\) worst-case time
- **Matrix operations:**
 - Note: \(n = \) number-of-rows = number-of-columns
 - Matrix-vector product: \(O(n^2)\) worst-case time
 - Matrix-matrix multiplication: \(O(n^3)\) worst-case time
- **More later with sorting and graph algorithms**