What Makes a Good Algorithm?

- Suppose you have two possible algorithms or data structures that basically do the same thing; which is better?

- Well… what do we mean by better?
 - Faster?
 - Less space?
 - Easier to code?
 - Easier to maintain?
 - Required for homework?

- How do we measure time and space for an algorithm?

Sample Problem: Searching

- Determine if a sorted array of integers contains a given integer

 First solution: Linear Search (check each element)

```java
static boolean find(int[] a, int item) {
    for (int i = 0; i < a.length; i++) {
        if (a[i] == item) return true;
    }
    return false;
}
```

Second solution: Binary Search

```java
static boolean find(int[] a, int item) {
    int low = 0;
    int high = a.length - 1;
    while (low <= high) {
        int mid = (low + high)/2;
        if (a[mid] < item)
            low = mid + 1;
        else if (a[mid] > item)
            high = mid - 1;
        else return true;
    }
    return false;
}
```

Linear Search vs Binary Search

- Which one is better?
 - Linear Search is easier to program
 - But Binary Search is faster… isn’t it?

- How do we measure to show that one is faster than the other?
 - Experiment?
 - Proof?
 - Which inputs do we use?

- Simplifying assumption #1: Use the size of the input rather than the input itself
 - For our sample search problem, the input size is n+1 where n is the array size

- Simplifying assumption #2: Count the number of "basic steps" rather than computing exact times

Sample Problem: Searching

- Determine if a sorted array of integers contains a given integer

 First solution: Linear Search (check each element)

```java
static boolean find(int[] a, int item) {
    for (int i = 0; i < a.length; i++) {
        if (a[i] == item) return true;
    }
    return false;
}
```

- Simplifying assumption #1: Use the size of the input rather than the input itself
 - For our sample search problem, the input size is n+1 where n is the array size

- Simplifying assumption #2: Count the number of "basic steps" rather than computing exact times
One Basic Step = One Time Unit

- **Basic step:**
 - input or output of a scalar value
 - accessing the value of a scalar variable, array element, or field of an object
 - assignment to a variable, array element, or field of an object
 - a single arithmetic or logical operation
 - method invocation (not counting argument evaluation and execution of the method body)

- For a conditional, count number of basic steps on the branch that is executed
- For a loop, count number of basic steps in loop body times the number of iterations
- For a method, count number of basic steps in method body (including steps needed to prepare stack-frame)

Runtime vs Number of Basic Steps

- **But is this cheating?**
 - The runtime is not the same as the number of basic steps
 - Time per basic step varies depending on computer, on compiler, on details of code...

- **For a conditional, count number of basic steps on the branch that is executed**
- **For a loop, count number of basic steps in loop body times the number of iterations**
- **For a method, count number of basic steps in method body (including steps needed to prepare stack-frame)**

Using Big-O to Hide Constants

- **We say f(n) is order of g(n) if** f(n) is bounded by a constant times g(n)
- **Notation:** f(n) is O(g(n))

- Roughly, f(n) is O(g(n)) means that f(n) grows like g(n) or slower, to within a constant factor
- "Constant" means fixed and independent of n

Example: \(n^2 + n \) is \(O(n^2) \)
- We know \(n \leq n^2 \) for \(n \geq 1 \)

- So \(n^2 + n \leq 2n^2 \) for \(n \geq 1 \)

- So by definition, \(n^2 + n \) is \(O(n^2) \) for \(c=2 \) and \(N=1 \)

Formal definition: \(f(n) \) is \(O(g(n)) \) if there exist constants \(c \) and \(N \) such that for all \(n \geq N \), \(f(n) \leq c \cdot g(n) \)

A Graphical View

- To prove that \(f(n) \) is \(O(g(n)) \):
 - Find an \(N \) and \(c \) such that \(f(n) \leq c \cdot g(n) \) for all \(n \geq N \)
 - We call the pair \((c, N)\) a witness pair for proving that \(f(n) \) is \(O(g(n)) \)

Big-O Examples

- Let \(f(n) = 3n^2 + 6n - 7 \)
 - \(f(n) \) is \(O(n^2) \)

- \(g(n) = 4n \log n + 34n - 89 \)
 - \(g(n) \) is \(O(n \log n) \)
 - \(g(n) \) is \(O(n^2) \)

- \(h(n) = 202n + 40n \)
 - \(h(n) \) is \(O(2n) \)

- \(a(n) = 34 \)
 - \(a(n) \) is \(O(1) \)

- Only the leading term (the term that grows most rapidly) matters
Problem-Size Examples

- Suppose we have a computing device that can execute 1000 operations per second; how large a problem can we solve?

<table>
<thead>
<tr>
<th></th>
<th>1 second</th>
<th>1 minute</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1000</td>
<td>60,000</td>
<td>3,600,000</td>
</tr>
<tr>
<td>n log n</td>
<td>140</td>
<td>4893</td>
<td>200,000</td>
</tr>
<tr>
<td>n^2</td>
<td>31</td>
<td>244</td>
<td>1897</td>
</tr>
<tr>
<td>3n²</td>
<td>18</td>
<td>144</td>
<td>1096</td>
</tr>
<tr>
<td>n^3</td>
<td>10</td>
<td>39</td>
<td>153</td>
</tr>
<tr>
<td>2^n</td>
<td>9</td>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>

Commonly Seen Time Bounds

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>constant</td>
<td>excellent</td>
</tr>
<tr>
<td>$O(\log n)$</td>
<td>logarithmic</td>
<td>excellent</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>linear</td>
<td>good</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>$n \log n$</td>
<td>pretty good</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>quadratic</td>
<td>OK</td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>cubic</td>
<td>maybe OK</td>
</tr>
<tr>
<td>$O(2^n)$</td>
<td>exponential</td>
<td>too slow</td>
</tr>
</tbody>
</table>

Worst-Case/Expected-Case Bounds

- We can’t possibly determine time bounds for all possible inputs of size n
- Simplifying assumption #4: Determine number of steps for either
 - worst-case or
 - expected-case
- Worst-case
 - Determine how much time is needed for the worst possible input of size n
- Expected-case
 - Determine how much time is needed on average for all inputs of size n

Our Simplifying Assumptions

- Use the size of the input rather than the input itself – n
- Count the number of “basic steps” rather than computing exact times
- Multiplicative constants and small inputs ignored (order-of, big-O)
- Determine number of steps for either
 - worst-case
 - expected-case
- These assumptions allow us to analyze algorithms effectively

Worst-Case Analysis of Searching

Linear Search
```java
static boolean find (int[] a, int item) {  
    for (int i = 0; i < a.length; i++) {  
        if (a[i] == item) return true;  
    }  
    return false;  
}
worst-case time = $O(n)$
```

Binary Search
```java
static boolean find (int[] a, int item) {  
    int low = 0;  
    int high = a.length - 1;  
    while (low <= high) {  
        int mid = (low + high)/2;  
        if (a[mid] < item)  
            low = mid+1;  
        else if (a[mid] > item)  
            high = mid - 1;  
        else return true;  
    }  
    return false;  
}
worst-case time = $O(\log n)$
```

Comparison of Algorithms

```
Linear vs. Binary Search
```

```
<table>
<thead>
<tr>
<th>Max Number of Comparisons</th>
<th>0</th>
<th>7.5</th>
<th>15.0</th>
<th>22.5</th>
<th>30.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Items in Array</td>
<td>0</td>
<td>7.5</td>
<td>15.0</td>
<td>22.5</td>
<td>30.0</td>
</tr>
</tbody>
</table>
```

- Linear Search
- Binary Search
Linear vs. Binary Search

Comparison of Algorithms

<table>
<thead>
<tr>
<th>Number of Items in Array</th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis of Matrix Multiplication

By convention, matrix problems are measured in terms of \(n \), the number of rows and columns:
- Note that the input size is really \(2n^2 \), not \(n \)
- Worst-case time is \(O(n^2) \)
- Expected-case time is also \(O(n^2) \)

Code for multiplying \(n \)-by-\(n \) matrices \(A \) and \(B \):

```c
for (i = 0; i < n; i++)
    for (j = 0; j < n; j++) {
        C[i][j] = 0;
        for (k = 0; k < n; k++)
            C[i][j] += A[i][k]*B[k][j];
    }
```

Remarks

- Once you get the hang of this, you can quickly zero in on what is relevant for determining asymptotic complexity.
 - For example, you can usually ignore everything that is not in the innermost loop. Why?
- Main difficulty:
 - Determining runtime for recursive programs

Why Bother with Runtime Analysis?

- Computers are so fast these days that we can do whatever we want using just simple algorithms and data structures, right?
- Well... not really – data-structure/algorithm improvements can be a very big win.
 - Scenario:
 - \(A \) runs in \(n^2 \) msec
 - \(A' \) runs in \(n^2/10 \) msec
 - \(B \) runs in \(10 \log n \) msec
 - Problem of size \(n=10^3 \)
 - \(A \): \(10^2 \) sec = 17 minutes
 - \(A' \): \(10^2 \) sec = 17 minutes
 - \(B \): \(10^5 \) sec = 17 minutes
 - Problem of size \(n=10^5 \)
 - \(A \): \(10^9 \) sec = 30 years
 - \(A' \): \(10^9 \) sec = 3 years
 - \(B \): \(2 \times 10^8 \) sec = 2 days

Algorithms for the Human Genome

- Human genome
 - \(3.5 \) billion nucleotides
 - \(1 \) Gb
- @1 base-pair instruction/\(\mu \)sec
 - \(n^2 \) \(\rightarrow \) \(386445 \) years
 - \(n \log n \) \(\rightarrow \) \(30.824 \) hours
 - \(n \) \(\rightarrow \) \(3 \) years
Limitations of Runtime Analysis

- Big-O can hide a very large constant
 - Example: selection
 - Example: small problems

- The specific problem you want to solve may not be the worst case
 - Example: Simplex method for linear programming

- Your program may not be run often enough to make analysis worthwhile
 - Example: one-shot vs. every day

- You may be analyzing and improving the wrong part of the program
 - Very common situation
 - Should use profiling tools

Summary

- Asymptotic complexity
 - Used to measure of time (or space) required by an algorithm
 - Measure of the algorithm, not the problem

- Searching a sorted array
 - Linear search: $O(n)$ worst-case time
 - Binary search: $O(\log n)$ worst-case time

- Matrix operations:
 - Matrix-vector product: $O(n^2)$ worst-case time
 - Matrix-matrix multiplication: $O(n^3)$ worst-case time
 - Note: $n = \text{number-of-rows} = \text{number-of-columns}$

- More later with sorting and graph algorithms