
1

Interfaces & Types

Lecture 9
CS211 – Spring 2007

2

Interfaces

• So far, we have talked about interfaces informally, in
the English sense of the word
– an interface describes how a client interacts with a class
– method names, argument/return types, fields

• Java has a construct called interface which can
be used formally for this purpose

3

Java interface
• name of interface:
IPuzzle

• a class implements
this interface by
implementing
public instance
methods as
specified in the
interface

• the class may
implement other
methods

interface IPuzzle {
void scramble();
int tile(int r, int c);
boolean move(char d);

}

class IntPuzzle implements IPuzzle {
public void scramble() {...}
public int tile(int r, int c) {...}
public boolean move(char d) {...}

}

4

Notes

• An interface is not a class!
– cannot be instantiated
– incomplete specification

• class header must assert implements I for Java to
recognize that the class implements interface I

• A class may implement several interfaces:
class X implements IPuzzle, IPod {...}

5

Why an interface construct?

• good software engineering
– specify and enforce boundaries between different

parts of a team project

• can use interface as a type
– allows more generic code
– reduces code duplication

6

Example of code duplication

• Suppose we have two implementations of puzzles:
– class IntPuzzle uses an int to hold state
– class ArrayPuzzle uses an array to hold state

• Assume client wants to use both implementations
– perhaps for benchmarking both implementations to pick the

best one
– client code has a display method to print out puzzles

• What would the display method look like?

7

Class Client{
IntPuzzle p1 = new IntPuzzle();
ArrayPuzzle p2 = new ArrayPuzzle();
...display(p1)...display(p2)...

public static void display(IntPuzzle p){
for (int r = 0; r < 3; r++)

for (int c = 0; c < 3; c++)
System.out.println(p.tile(r,c));

}

public static void display(ArrayPuzzle p){
for (int r = 0; r < 3; r++)

for (int c = 0; c < 3; c++)
System.out.println(p.tile(r,c));

}
}

Code
duplicated
because
IntPuzzle
and
ArrayPuzzle
are different

8

Observation

• Two display methods are needed because
IntPuzzle and ArrayPuzzle are different types,
and parameter p must be one or the other

• but the code inside the two methods is identical!
– code relies only on the assumption that the object p has an

instance method tile(int,int)

• Is there a way to avoid this code duplication?

9

One Solution ― Abstract Classes
abstract class Puzzle {
abstract int tile(int r, int c);
...

}
class IntPuzzle extends Puzzle {
public int tile(int r, int c) {...}
...

}
class ArrayPuzzle extends Puzzle {
public int tile(int r, int c) {...}
...

}

public static void display(Puzzle p){
for (int r = 0; r < 3; r++)

for (int c = 0; c < 3; c++)
System.out.println(p.tile(r,c));

}}

Puzzle
code

Client
code

10

Another Solution ― Interfaces
interface IPuzzle {
int tile(int r, int c);
...

}
class IntPuzzle implements IPuzzle {
public int tile(int r, int c) {...}
...

}
class ArrayPuzzle implements IPuzzle {
public int tile(int r, int c) {...}
...

}

public static void display(IPuzzle p){
for (int r = 0; r < 3; r++)

for (int c = 0; c < 3; c++)
System.out.println(p.tile(r,c));

}}

Puzzle
code

Client
code

11

• interface names can be used in type declarations
– IPuzzle p1, p2;

• a class that implements the interface is a subtype of the
interface type
– IntPuzzle and ArrayPuzzle are subtypes of IPuzzle
– IPuzzle is a supertype of IntPuzzle and ArrayPuzzle

IPuzzle

IntPuzzle ArrayPuzzle

12

• Unlike classes, types do not form a tree!
– a class may implement several interfaces
– an interface may be implemented by several classes

IPuzzle IPod IRon

AClass BClass

Interfaces

Classes

13

Extending a Class
vs

Implementing an Interface

• A class can
– implement many interfaces, but
– extend only one class

• To share code between two classes
– put shared code in a common superclass
– interfaces cannot contain code

14

Static vs Dynamic Types
• Every variable (more generally, every expression that

denotes some kind of data) has a static* or compile-
time type
– derived from declarations – you can see it
– known at compile time, without running the program
– does not change

• Every object has a dynamic or runtime type
– obtained when the object is created using new
– not known at compile time – you can’t see it

* Warning! No relation to Java keyword static

15

Example
int i = 3, j = 4;
Integer x = new Integer(i+3*j-1);
System.out.println(x.toString());

• static type of the variables i,j and the expression
i+3*j-1 is int

• static type of the variable x and the expression
new Integer(i+3*j-1) is Integer

• static type of the expression x.toString() is
String (because toString() is declared in the
class Integer to have return type String)

• dynamic type of the object created by the execution
of new Integer(i+3*j-1) is Integer

16

Reference vs Primitive Types

• Reference types
– classes, interfaces, arrays
– E.g.: Integer

• Primitive types
– int, long, short, byte, boolean, char, float, double

x:

(Integer)
int value: 13
String toString()
...

13x:

17

Why Both int and Integer?

• Some data structures work only with reference types
(Hashtable, Vector, Stack, ...)

• Primitive types are more efficient
for (int i = 0; i < n; i++) {...}

18

Upcasting and Downcasting
• Applies to reference types only
• Used to assign the value of an expression of one

(static) type to a variable of another (static) type
– upcasting: subtype → supertype
– downcasting: supertype → subtype

• A crucial invariant:

If during execution, an expression E is ever evaluated
and its value is an object O, then the dynamic type of
O is a subtype of the static type of E.

19

Upcasting
• Example of upcasting:

– static type of expression on rhs is Integer
– static type of variable x on lhs is Object
– Integer is a subtype of Object, so this is an upcast

• static type of expression on rhs must be a subtype of
static type of variable on lhs – compiler checks this

• upcasting is always type correct – preserves the
invariant automatically

Object x = new Integer(13);

20

Downcasting
• Example of downcasting:

– static type of y is Object (say)
– static type of x is Integer
– static type of expression (Integer)y is Integer
– Integer is a subtype of Object, so this is a downcast

• In any downcast, dynamic type of object must be a
subtype of static type of cast expression

• runtime check, ClassCastException if failure
• needed to maintain invariant (and only time it is needed)

Integer x = (Integer)y;

21

Is the Runtime Check Necessary?

void bar() {
foo(new Integer(13));

}

void foo(Object y) {
int z = ((Integer)y).intValue();
...

}

Yes, because dynamic type of object may
not be known at compile time

String("x")

22

Upcasting with Interfaces
• Java allows up-casting:

IPuzzle p1 = new ArrayPuzzle();
IPuzzle p2 = new IntPuzzle();

• Static types of right-hand side expressions are
ArrayPuzzle and IntPuzzle, resp.

• Static type of left-hand side variables is IPuzzle

• Rhs static types are subtypes of lhs static type, so
this is ok

23

Why Upcasting?

• Subtyping and upcasting can be used to avoid code
duplication

• Puzzle example: you and client agree on interface
IPuzzle

interface IPuzzle {
void scramble();
int tile(int r, int c);
boolean move(char d);

}

24

Solution
interface IPuzzle {
int tile(int r, int c);
...

}
class IntPuzzle implements IPuzzle {
public int tile(int r, int c) {...}
...

}
class ArrayPuzzle implements IPuzzle {
public int tile(int r, int c) {...}
...

}

public static void display(IPuzzle p){
for (int r = 0; r < 3; r++)

for (int c = 0; c < 3; c++)
System.out.println(p.tile(r,c));

}}

Puzzle
code

Client
code

25

Method Dispatch

• Which tile method is invoked?
– depends on dynamic type of object p (IntPuzzle

or ArrayPuzzle)
– we don't know what it is, but whatever it is, we

know it has a tile method (since any class that
implements IPuzzle must have a tile method)

public static void display(IPuzzle p) {
for (int row = 0; row < 3; row++)
for (int col = 0; col < 3; col++)

System.out.println(p.tile(row,col));
}}

26

Method Dispatch

• Compile-time check: does the static type of p
(namely IPuzzle) have a tile method with
the right type signature? No → error

• Runtime: go to object that is the value of p,
find its dynamic type, look up its tile method

• The compile-time check guarantees that an
appropriate tile method exists

public static void display(IPuzzle p) {
for (int row = 0; row < 3; row++)
for (int col = 0; col < 3; col++)

System.out.println(p.tile(row,col));
}}

27

Note on Casting

• Up- and downcasting do not change the
object — they merely allow it to be
viewed at compile time as a different
static type

28

Another Use of Upcasting
Heterogeneous Data Structures

• Example:
IPuzzle[] pzls = new IPuzzle[9];
pzls[0] = new IntPuzzle();
pzls[1] = new ArrayPuzzle();

• expression pzls[i] is of type IPuzzle
• objects created on right hand sides are of

subtypes of IPuzzle

29

Java instanceof

• Example:
if (p instanceof IntPuzzle) {...}

• true if dynamic type of p is a subtype of
IntPuzzle

• usually used to check if a downcast will succeed

30

Example

void twist(IPuzzle[] pzls) {
for (int i = 0; i < pzls.length; i++) {

if (pzls[i] instanceof IntPuzzle) {
IntPuzzle p = (IntPuzzle)pzls[i];
p.twist();

}}}

• suppose twist is a method implemented
only in IntPuzzle

31

Avoid Useless Downcasting

void moveAll(IPuzzle[] pzls) {
for (int i = 0; i < pzls.length; i++) {
if (pzls[i] instanceof IntPuzzle)

((IntPuzzle)pzls[i]).move("N");
else ((ArrayPuzzle)pzls[i]).move("N");

}}

void moveAll(IPuzzle[] pzls) {

for (int i = 0; i < pzls.length; i++)
pzls[i].move("N");

}

bad

good

32

Subinterfaces

• Suppose you want to extend the interface to
include more methods
– IPuzzle: scramble, move, tile
– ImprovedPuzzle: scramble, move, tile,
samLoyd

• Two approaches
– start from scratch and write an interface
– extend the IPuzzle interface

33

interface IPuzzle {
void scramble();
int tile(int r, int c);
boolean move(char d);

}

interface ImprovedPuzzle extends IPuzzle {
void samLoyd();

}

•IPuzzle is a superinterface of ImprovedPuzzle
•ImprovedPuzzle is a subinterface of IPuzzle
•ImprovedPuzzle is a subtype of IPuzzle
• An interface can extend multiple superinterfaces
• A class that implements an interface must implement all

methods declared in all superinterfaces
34

D

E F

G
I

A

B
C

interface C extends A,B {...}
class F extends D implements A {...}
class E extends D implements A,B {...}

Interfaces Classes

35

Conclusion

• Interfaces have two main uses
– software engineering: good fences make good neighbors

– subtyping

• Subtyping is a central idea in programming languages
– inheritance and interfaces are two methods for creating

subtype relationships

