
CS 211 Section 3: Recursion and Parsing
(by Nicholas Ruozzi and Lisa Minich)

Recursion is similar to induction in reverse. We want to take the kth state and reduce it to
the (k-1) th state. For example:

Summing up the numbers 0 through k can be done iteratively:

int sum =0;
for(int i=1; i< =k; i++)
{
 sum += i;
}

or recursively:

public int sum(int n)
{
 if(n==0) //base case
 return 0;
 else //recursive case
 return sum(n-1) + n;
}

Where the nth state is added to the (n-1) th state for all n greater than the base case. Which
in this example was 0.

Tail Recursion:
A method is tail recursive if the last action of the recursive method is the recursive call.
For example, the solutions to problems 1 and 2 are not tail recursive, but the solution to
problem 3 is tail recursive. Because recursion builds frame upon frame of the stack, the
additional overhead required by non-tail recursive functions could be costly for large
inputs.

Problem 1 (Reverse a string recursively):

 public String reverseString(String word)
 {
 if(word == null || word.equals(“”))
 return word;
 else
 return reverseString(word.substring(1, word.length())) + word.substring(0,1);
 }

Problem 2 (Remove consecutive duplicates from a string recursively):

For example, convert “aabccba” to “abcba”

 public String removeDuplicates(String word)
 {
 if(word == null || word.length() <= 1)
 return word;
 else if(word.charAt(0) == word.charAt(1))
 return removeDuplicates(word.substring(1, word.length()));
 else
 return word.charAt(0) + removeDuplicates(word.substring(1, word.length()));
 }

Problem 3 (Compute n mod m without using %):

public int modulus(int val, int divisor)
{
 if(val < divisor)
 return val;
 else
 return modulus(val - divisor, divisor);
}

Problem 1 (again) with Tail Recursion:
Someone asked in section if it was possible to convert non-tail recursive functions into
tail recursive ones. The answer is usually yes. To illustrate how this can be done, I will
rewrite problem one using tail recursion. To do this, I will utilize a helper function.

 public String reverseString(String word)
 {
 return tailReverse(word, “”);
 }

 public String tailReverse(String word, String res)
 {
 if(word == null || word.equals(“”))
 return res;
 else
 return tailReverse(word.substring(1, word.length()), res + word.charAt(0));
 }

tailReverse is a tail recursive method that reverses a string.

Parsing:
All of the information on parsing can be found in the lecture notes.

