Introduction to graphical
user interfaces: layout

Lecture 23
CS 211 Spring 2006
Andrew Myers

Interactive programs

“Classic” view of input
computer programs:

transform inputs to

outputs, stop

Modern programs:

interactive, long-

running

input
o Servers interacting with ~ events \
clients
o Apps with GUlIs program

interacting with user(s)

GUIs: graphical user interfaces

An important way to build useful
interactive programs

Modern user interface
frameworks (e.g., Java Swing)
make GUIs pretty easy

Useful to know how to do it!

Java Foundation Classes

Java Foundation Our main focus:
Classes Swing
o Classes for building GUIs o A framework for building
o Major components GUIs out of windows &
Swing components
Pluggable look-and-feel o Handling user interactions
support
Accessibility API
Java 2D API

Drag-and-drop Support
Internationalization

Other Aspects of the JFC

Pluggable look-and-feel Support
o Controls look-and-feel for particular windowing environment
o E.g., Windows, Motif
Accessibility API
0 Supports assistive technologies such as screen readers and Braille
Java 2D
o Drawing
o Includes rectangles, lines, circles, images, ...
o 3D graphics libraries also exist
Drag-and-drop:
0 Support for drag and drop between Java application and a native
application
Internationalization
o Support for other languages

Brief Example

public Intro() {

LEFT)) ;

add(b) ;
add (Label) ;
b

(new ActionListener() {
actionPerformed (ActionEvent e) {

tText (generateLabel ()) :

private String generatelLabel() {

return "Count: "+count
)

)

GUI statics vs. GUI dynamics

Statics: Dynamics:

what’s drawn on the user interactions
screen: Ul layout o Events

o Components E.g., button-press, mouse-

E.g., buttons, labels, lists, . click, key-pres-s

sliders o Listeners: an object that
Containers: components responds to an event
that contain other o Helper classes

o

components E.g., Graphics, Color, Font,

E.g., frames, panels, dialog FontMetrics, Dimension
boxes
o Layout managers: control
placement and sizing of
components

Overview for Statics

Determine which components you want

Choose a top-level container in which to
put the components

Choose a layout manager to determine
how components are arranged

Place components

Components

Components = what you see
o Visual part of an interface
o Represents something with position and size

o Can be painted on screen and receive events from
user interaction

o Buttons, labels, lists, sliders, etc.

Component Examples

import javax.swing.*;
import java.awt.*;

public class C le: JFrame {
public static void main(String[] args) {
C les £ = new C le: ;
f.setDefaultCloseOperation (JFrame.EXIT ON_CLOSE) ;
£.pack() ;

f.setVisible (true) ;
}

public ComponentExamples() {
setLayout(new FlowLayout(FlowLayout.LEFT));
add (new JButton ("Button")) ;
add (new JLabel ("Label")) ;
add (new JComboBox (new String[] { "A", "B","C" }));
add (new JCheckBox ("JCheckBox")) ;
add (new JSlider (0,100));
add (new JColorChooser()) ;

More components

JFileChooser: allows choosing a file
JLabel: a simple text label
JTextArea: editable text

JTextField: editable text (one line)
JScrollBar: a scrollbar
JPopupMenu: a pop-up menu
JProgressBar: a progress bar

etc.!

Containers
A container is a component Other important containers
o Holds other components o JPanel: used to organize objects
o Has a layout manager within other containers
Containers can contain other o JScrollPane: allows contained
N components to be scrolled
containers

o Components form a tree!
Heavyweight vs. lightweight
o A heavyweight component
interacts directly with the host

Top-level containers system: a window
o JWindow: top-level window with no o JWindow, JFrame, and JDialog
border are heavyweight
o JFrame: top-level window with o Swing components are almost all
border and (optional) menu bar lightweight
o JDialog: used for dialog windows E.g,, JPanel is lightweight
Heavyweight vs. lightweight Canvas is a heavyweight

component not at top level.

A component tree

JFrame

|
JPanel

~

JPanel JPa‘neI
\

JPanel JPanel

7N\ /N

] Comverter FE
Metric System
[2226 Kilometers
— e
U.S. System
[2.000 Miles -

JPanel JPanel JPanel JPanel

ComboBox (km)

JTexiField (3226) JTextField (2000)

JSlider JSlider

JComboBox (mi)

Creating a Window

import javax.swing.*;

public class Basicl {

public static void main(String[] args) {

// Create window:

JFrame f = new JFrame ("Basic Test!");

// Set 500x500 pixels”2:

f.setSize (500,500) ;

// Show the window:
f.setVisible (true) ;

// Quit Java after closing the window:
f.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;

Creating a Window using a Constructor

import javax.swing.*;

public class Basic3 extends JFrame {

public static void main(String[] args) {

new Basic3();

}
public Basic3() {

// Title window:
setTitle("Basic Test!");

// Set 500x500 pixels”2:
setSize (500,500) ;

// Show the window:
setVisible (true) ;

// Quit Java after closing the window:
setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;

Layout Managers

A layout manager controls
placement and sizing of
components in a container

o If you do not specify a layout
manager, the container will use a
default:

JPanel default = FlowLayout
JFrame default = BorderLayout

Five common layout managers:
BorderLayout, BoxLayout,
FlowLayout, GridBagLayout,
GridLayout

General syntax

container.setLayout (
new LayoutMgr())

Examples:

JPanel pl = new JPanel(
new BorderLayout());

JPanel p2 = new JPanel();
p2.setLayout (
new BorderLayout());

Some Example Layout Managers

FlowLayout

o Components placed from left
to right in order added

o When a row is filled, a new row
is started

o Lines can be centered, left-
justified or right-justified (see
FlowLayout constructor)

0 See also BoxLayout

GridLayout
o Components are placed in grid
pattern (think array)
0 #rows, #columns defined by
GridLayout constructor
o Grid is filled left-to-right, then
top-to-bottom

BorderLayout:
o Divides window into 5 areas:
North, South, East, West,
Center

Adding components
o FlowLayout and GridLayout
use container.add(component)
o BorderLayout uses
container.add(component,
constraint)
where constraint is one of
BorderLayout.North
BorderLayout.South
BorderLayout.East
BorderLayout. West
BorderLayout.Center

More Layout Managers

BoxLayout

o Simple linear layout (left-to-
right, bottom-to-top,...)
o Use via Box container

CardLayout

o Tabbed index card look
from Windows

GridBagLayout

o Versatile, but complicated

Custom
o Can define your own layout
manager

Best to try Java's layout
managers first...

o

Null

o No layout manager

o Programmer must specify
absolute locations
Provides great control, but
can be dangerous to
application because of
platform dependency

o

LayoutDemo Example

LayoutDemo.java shows several different

layout managers.

AWT vs. Swing
AWT

a

a

o

o

Initial GUI toolkit for Java
Provided a “Java” look and
feel

Basic API: java.awt.*
Some functionality still
important (e.g., layout
managers)

Swing

a

o

o

a

More recent (Java 1.2) GUI
toolkit that extends, builds
on AWT

Added functionality (new
components)

Supports look and feel for
various platforms
(Windows, Motif, Mac)
Basic API: javax.swing.*

Code Examples

Basic1.java
o Create a window
Basic2.java

o Create a window using an
initialization block

Basic3.java

o Create a window using a
constructor

Calculator.java

o Shows use of JOptionPane
to produce standard dialogs

ComponentExamples.

java

o Sample components
Intro.java

o Button & counter
Statics1.java

o FlowLayout example
Statics2.java

o GridLayout example
LayoutDemo.java
o Multiple layouts

