

Applications of Graphs

- Communication networks

- Routing and shortest path problems
- Commodity distribution (flow)
- Traffic control
- Resource allocation
- Geometric modeling
-...

Graphs can be used to represent many things
\Rightarrow graph algorithms have many applications...

Graph Definitions

- A directed graph (or digraph) is a pair (V, E) where
- V is a set
- E is a set of ordered pairs (u, v) where $u, v \in V$

Usually require $u \neq \mathrm{v}$ (no self-loops)

- An element of V is called a vertex (pl . vertices) or node
- An element of E is called an edge or arc
- $|\mathrm{V}|=$ size of V , often denoted n
- $|\mathrm{E}|=$ size of E , often denoted m

Example Directed Graph

Example:

$V=\{a, b, c, d, e, f\}$
$E=\{(a, b),(a, c),(a, e),(b, c),(b, d),(b, e),(c, d)$, (c,f), (d,e), (d,f), (e,f)\}
$|V|=6,|E|=11$

Example Undirected Graph

An undirected graph is just like a directed graph, except the edges are unordered pairs (sets) $\{u, v\}$

Example:

$V=\{a, b, c, d, e, f\}$
$E=\{\{a, b\},\{a, c\},\{a, e\},\{b, c\},\{b, d\},\{b, e\},\{c, d\},\{c, f\}$,
$\{d, e\},\{d, f\},\{e, f\}\}$

Some Graph Terminology

- Vertices u and v are called the source and sink of the directed edge (u, v), respectively
- Vertices u and v are called the endpoints of (u,v)
- Two vertices are adjacent if they are connected by an edge
- The outdegree of a vertex u in a directed graph is the number of edges for which u is the source
- The indegree of a vertex v in a directed graph is the number of edges for which v is the sink
- The degree of a vertex u in an undirected graph is the number of edges of which u is an endpoint

Is this a dag?

- Intuition: If it's a dag, there should be a "first" vertex (i.e., a vertex with indegree zero)
- This idea leads to an algorithm
- A digraph is a dag if and only if we can iteratively delete indegree0 vertices until the graph disappears

Is this a dag?

- Intuition: If it's a dag, there should be a "first" vertex (i.e., a vertex with indegree zero)
- This idea leads to an algorithm
- A digraph is a dag if and only if we can iteratively delete indegree0 vertices until the graph disappears

Is this a dag?

- Intuition: If it's a dag, there should be a "first" vertex (i.e., a vertex with indegree zero)
- This idea leads to an algorithm
- A digraph is a dag if and only if we can iteratively delete indegree0 vertices until the graph disappears

Is this a dag?

- Intuition: If it's a dag, there should be a "first" vertex (i.e., a vertex with indegree zero)
- This idea leads to an algorithm
- A digraph is a dag if and only if we can iteratively delete indegree0 vertices until the graph disappears

Is this a dag?

- Intuition: If it's a dag, there should be a "first" vertex (i.e., a vertex with indegree zero)
- This idea leads to an algorithm
- A digraph is a dag if and only if we can iteratively delete indegree0 vertices until the graph disappears

Is this a dag?

- Intuition: If it's a dag, there should be a "first" vertex (i.e., a vertex with indegree zero)
- This idea leads to an algorithm
- A digraph is a dag if and only if we can iteratively delete indegree0 vertices until the graph disappears

Topological Sort

- Just computed a topological sort of the dag
- A numbering of the vertices such that all edges go from lower- to higher-numbered vertices

- A dag: generalization of a tree w/ multiple parents
- Useful in job scheduling with constraints

Graph Coloring

- A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color

- How many colors are needed to color this graph?
- 3

An Application of Coloring

- Vertices are jobs
- Edge (u, v) is present if jobs u and v each require access to the same shared resource, and thus cannot execute simultaneously
- Colors are time slots to schedule the jobs
- Minimum number of colors needed to color the graph $=$ minimum number of time slots required

Planarity

- A graph is planar if it can be embedded in the plane with no edges crossing

- Is this graph planar?

Planarity

- A graph is planar if it can be embedded in the plane with no edges crossing

- Is this graph planar?
- Yes

Planarity

- A graph is planar if it can be embedded in the plane with no edges crossing

- Is this graph planar?
- Yes

Bipartite Graphs

- A directed or undirected graph is bipartite if the vertices can be partitioned into two sets such that all edges go between the two sets
- Can represent a relationship between two sets, e.g. "is taking" between students and classes

Bipartite Graphs

- The following are equivalent
- G is bipartite
- G is 2-colorable
- G has no cycles of odd length

Traveling Salesperson

Find a path of minimum distance that visits every city

Implementing Weighted Digraphs

- Adjacency Matrix $\mathrm{g}[\mathrm{u}][\mathrm{v}]$ is c iff there is an edge of cost c from u to v
- Adjacency List The list for u contains v, c iff
$\begin{array}{llll}0 & 1 & 2\end{array}$

0		15		11
1			20	
2	8			
3				

Adjacency Matrix or Adjacency List?

```
\(\mathrm{n}=\) number of vertices
\(\mathrm{m}=\) number of edges
\(\mathrm{m}_{\mathrm{u}}=\) number of edges leaving u
    - Adjacency Matrix
    - Uses space O(n²)
    - Can iterate over all edges in
        time \(O\left(n^{2}\right)\)
    " Can answer "Is there an edge
        from \(u\) to \(v\) ?" in \(O(1)\) time
        - Better for dense (i.e., lots of
        edges) graphs
                            Adjacency List
                            - Uses space O(m+n)
                            - Can iterate over all edges in
        time \(O(m+n)\)
            - Can answer "Is there an
        edge from u to v ?" in \(\mathrm{O}\left(\mathrm{m}_{\mathrm{u}}\right)\)
        time
            - Better for sparse (i.e., fewer
        edges) graph
```

Implementing Undirected Graphs

- Adjacency Matrix
$\mathrm{g}[\mathrm{u}][\mathrm{v}]$ is true iff there is an edge from u to v
- Adjacency List The list for u contains v iff there is an edge from u to v

Goal: Find Shortest Path in a Graph

- Finding the shortest (min-cost) path in a graph is a problem that occurs often
- Find the least-cost route between Ithaca and Detroit
- Result depends on our notion of cost
- least mileage
- least time
- cheapest
- least boring
- All of these "costs" can be represented as edge costs on a graph
- How do we find a shortest path?

Shortest Paths for Unweighted Graphs
bfsDistance(s):
$/ / \mathrm{s}$ is the start vertex
// dist[v] is length of s-to-v path
$/ /$ Initially dist $[\mathrm{v}]=\infty$ for all v
dist[s] $=0$;
Q.insert(s);
while (Q nonempty) \{
$\mathrm{v}=\mathrm{Q}$.get $($;
for (each w adjacent to v) \{ if $(\operatorname{dist}[\mathrm{w}]=\infty)\{$ $\operatorname{dist}[\mathrm{w}]=\operatorname{dist}[\mathrm{v}]+1$; Q.insert(w);
\}
,
\}

If There are Edge Costs?

- Idea \#1
- Add false nodes so that all edge costs are 1
- But what if edge costs are large?
- What if the costs aren't integers?
- Idea \#2
- Nothing "interesting" happens at the false nodes - Can't we just jump ahead to the next "real" node
- Rule: always do the closest (real) node first
- Use the array dist[] to
- Report answers
- Keep track of what to do

Dijkstra's Algorithm

- Intuition * s is the start vertex
- Edges are threads; vertices are - c(i,j) is the cost from i to j
beads
. Initially, vertices are unmarked leave the table
- dist[v] is length of s -to-v path
- Note: Negative edge-costs are not allowed
dijsktra(s):

while (some vertices are unmarked) $\}$
(some verices are unmarked
$\mathrm{v}=$ unmarked vertex with
smallest dist;
Mark v;
for (each w adj to v) $\operatorname{dist}[\mathrm{w}]=\min$ ($\operatorname{dist}[\mathrm{w}], \operatorname{dist}[\mathrm{v}]+\mathrm{c}(\mathrm{v}, \mathrm{w})$);
\}

Dijkstra's Algorithm using Adj Matrix

- While-loop is done n
times
- Within the loop
- Choosing v takes O(n) time - Could do this faster using PQ, but no reason to
- For-loop takes $\mathrm{O}(\mathrm{n})$ time
- Total time $=\mathrm{O}\left(\mathrm{n}^{2}\right)$
: s is the start vertex
c(ij) is the cost from
- $\mathrm{c}(\mathrm{i}, \mathrm{j})$ is the cost from i to j
- dist[y], verices are unmarked
- Initially, dist[$[\mathrm{v}]=\infty$, for all v
dijsktra(s):
$\operatorname{dist}[\mathrm{s}]=0$;
while (some vertices are unmarked) $\{$
$\mathrm{v}=$ unmarked vertex with smallest dist;
Mark v;
for (each wadj to v) $\{$ $\operatorname{dist}[\mathrm{w}]=\min$
(dist[$[\mathrm{w}]$, dist $[\mathrm{v}]+\mathrm{c}(\mathrm{v}, \mathrm{w})$);
\}

Dijkstra's Algorithm using Adj List

- Looks like we need a PQ
- Problem: priorities are updated as algorithm runs
- Can insert pair (v,dist[v]) in PQ whenever dist[v$]$ is updated
- At most m things in PQ
- Time $\mathrm{O}(\mathrm{n}+\mathrm{m} \log \mathrm{m})$
- Using a more complicated PQ (e.g., Pairing Heap), time can be brought down to
$\mathrm{O}(\mathrm{m}+\mathrm{n} \log \mathrm{n})$
- s is the start vertex
- $c(i, j, j$ is the cost from i to j
- Initially, vertices are unmarked
- dist[v] is length of s-to-v path
- Initially, dist $[\mathrm{v}]=\infty$, for all v
dijsktra(s):
$\operatorname{dist}[\mathrm{s}]=0$;
while (some vertices are unmarked) \{
$\mathrm{v}=$ unmarked vertex with
$\begin{aligned} \mathrm{v}= & \text { unmarked verte } \\ & \text { smallest dist; }\end{aligned}$
Mark v;
for (each wadj to v) \{ $\operatorname{dist}[\mathrm{w}]=\min$ $(\operatorname{dist}[\mathrm{w}], \operatorname{dist}[\mathrm{v}]+\mathrm{c}(\mathrm{v}, \mathrm{w}))$;
\}
,

Greedy Algorithms

- Dijkstra's Algorithm is an example of a Greedy Algorithm
- The Greedy Strategy is an algorithm design technique - Like Divide \& Conquer
- The Greedy Strategy is used to solve optimization problems
- The goal is to find the best solution
- Works when the problem has the greedy-choice property
- A global optimum can be reached by making locally optimum choices
- Problem: Given an amount of money, find the smallest number of coins to make that amount
- Solution: Use a Greedy

Algorithm

- Give as many large coins as you can
- This greedy strategy produces the optimum number of coins for the US coin system
- Different money system \Rightarrow greedy strategy may fai
- For example: suppose the US introduces a $4 d$ coin

