

Administrivia

- A5 due tomorrow
- A6 out very soon
 Implement the game Risk with graphical UI
- Prelim 2 in one week
 - 7:30pm Tuesday, Upson B17
 - Open book

The need for resizing

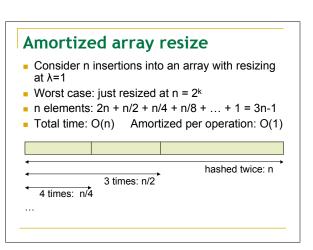
- Hash tables with collision resolution by chaining: O(1)?
 - Expected look-up time: $1+\lambda/2$ (if there), λ (if not) ■ But... $\lambda = n/m$ is O(n)!
- Solution 1: always preallocate a big enough hash table
 - Can't always predict
 - □ Bigger array \rightarrow wasted space, slower accesses
- Solution 2: grow the hash table when load factor λ exceeds a threshold

How to resize an array

- To resize a hash table:
 - Allocate a new array for the slots
 - $\mathop{\hbox{\rm le}}\nolimits$ Rehash all the elements from old array for the new array length, insert into new array
- To grow an array:
- Multiply array length by 2 (or some constant factor>1)
- Do when load factor exceeds some threshold λ_{max}
- (e.g. $\lambda_{max} = 1, 2, 3$) = Effect: $\lambda_{max} \rightarrow \lambda_{max}/2$
- To shrink an array:
- Divide array length by 2 (or some constant factor)
- Do when load factor goes below $\lambda_{max}/4$
 - Effect: $\lambda_{max}/4 \rightarrow \lambda_{max}/2$

Amortization

- Expected run time can now be O(n)!
 Rehashing and copying take linear time in array size
- But...resizing doesn't happen very often
- Idea: amortize the run time over a sequence of many operations
 - Amortized complexity: worst case for total run time divided by number of operations



Why geometric growth?

- Suppose we instead added space for k elements when array was full
- n insertions → n/k resizes
- Total work = k + 2k + 3k + ...+ n = (1 + 2 + 3 + ... + n/k) k =
 - k * (n/k(n/k+1)/2) = n(n/k + 1)/2
- This is O(n²), so amortized time O(n) per element added!

Sorting algorithm summary

The ones we have

- discussed
- Insertion Sort Selection Sort
- Merge Sort o.
- Quick Sort
- Other sorting
- algorithms
- Heap Sort (uses priority queue) Shell Sort (in text)
- Bubble Sort (nice name, slow)
- Radix Sort
- Counting Sort

Why so many?

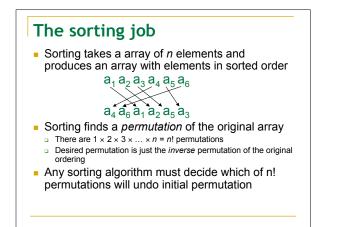
- Stable sorts: Ins, Sel, Mer
- Worst-case O(n log n): Mer, Hea
- Expected-case O(n log n): Mer. Hea. Qui
- Best for nearly-sorted sets: Ins
- No extra space needed: Ins, Sel, Hea
- Fastest in practice: Qui Fastest on uniform integer keys
 - (O(n)!): Radix
- Least data movement: Sel
- Bin Sort

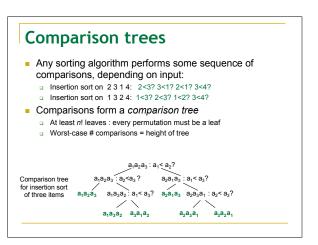
Problem complexity

- Asymptotically fastest sorting algorithms are $O(n \lg n)$
 - □ *kn* lg *n* is an *upper bound* on run time (for some *k*) Can we do better?
- Some problems have an intrinsic complexity -- no algorithm can do better
 - Complexity of a problem is a *lower bound* because no algorithm can run faster n lg n -merge, quick - Fastest possible?
- What is the intrinsic complexity of sorting?

Lower bounds on sorting

- Goal: Determine the minimum time required to sort *n* items (no matter what order they come in)
 - Want worst-case time for the best possible algorithm
- Assumption: sorting algorithm works by comparing pairs of elements
 - in general: that's all you can do





Time vs. Height

- Worst-case time for a sorting method must be \geq the height of its comparison tree
- Minimum possible height for • a binary tree with x leaves is la x
- The algorithm is doing more than just comparisons, but can use comparisons alone for lower bound
- With n! leaves? •

 $\begin{array}{l} \text{Height} \geq |g(n!) = \\ & lg(1 \times 2 \times \ldots \times n) = \\ & lg(1 \times n \times 2 \times (n-1) \times 3 \times \ldots \times n/2) \end{array}$ $= lg(1 \times n) + lg (2 \times (n-1)) + ...$ ≥ (n/2) * lg n

Any comparison-based sorting algorithm **must** have a worst-case time of $\Omega(n \lg n)$

• Lower bound; so we use big-Omega (Ω) instead of big-O

□ f(n) is $\Omega(n \lg n)$ if there exists k such that $f(n) \ge kn$ for large n

Using the Lower Bound on Sorting

Claim: I have a priority queue

- add time: O(1)
- removeMax time: O(1)
- True or false?

False (for general sets) because it could be used to sort in time O(n) using heapsort.

> Heapsort: insert all elements into priority queue, extract in priority order.

Sorting in Linear Time

Several sorting methods take only linear time

- Counting Sort Sorts integers from a small range: [0..k] where k = O(n)
- Radix Sort
- The method used by card-sorters
- Sorting time O(dn) where d is the number of "digits"
- Others...

How do they get around the

- $\Omega(n \lg n)$ lower bound?
- Don't use comparisons: use keys as numbers to index into arrays

Lower vs. upper bounds

- Many problems have provable lower bounds
 - When algorithm is O(f(n)) and problem is $\Omega(f(n))$... great!
- But for many important problems, big space between lower and upper bounds! Factoring
 - Many games (e.g., chess)
 - Traveling salesman and other optimization problems
 - Boolean satisfiability
 - Take 381/481 for more...