
1

Resizable arrays
Lower bounds on sorting

Lecture 21
CS 211 Spring 2006

Administrivia
 A5 due tomorrow
 A6 out very soon

 Implement the game Risk with graphical UI

 Prelim 2 in one week
 7:30pm Tuesday, Upson B17
 Open book

The need for resizing
 Hash tables with collision resolution by

chaining: O(1)?
 Expected look-up time: 1+λ/2 (if there), λ (if not)
 But… λ = n/m is O(n)!

 Solution 1: always preallocate a big
enough hash table
 Can’t always predict
 Bigger array → wasted space, slower accesses

 Solution 2: grow the hash table when load
factor λ exceeds a threshold

How to resize an array
 To resize a hash table:

 Allocate a new array for the slots
 Rehash all the elements from old array for the new array length,

insert into new array

 To grow an array:
 Multiply array length by 2 (or some constant factor>1)
 Do when load factor exceeds some threshold λmax

(e.g. λmax = 1, 2, 3)
 Effect: λmax → λmax/2

 To shrink an array:
 Divide array length by 2 (or some constant factor)
 Do when load factor goes below λmax/4
 Effect: λmax/4 → λmax/2

Amortization
 Expected run time can now be O(n)!

 Rehashing and copying take linear time in array size

 But…resizing doesn’t happen very often
 Idea: amortize the run time over a

sequence of many operations
 Amortized complexity: worst case for total run time

divided by number of operations

Amortized array resize
 Consider n insertions into an array with resizing

at λ=1
 Worst case: just resized at n = 2k

 n elements: 2n + n/2 + n/4 + n/8 + … + 1 = 3n-1
 Total time: O(n) Amortized per operation: O(1)

hashed twice: n
3 times: n/2

4 times: n/4
…

2

Why geometric growth?
 Suppose we instead added space for k

elements when array was full
 n insertions → n/k resizes
 Total work = k + 2k + 3k + …+ n =

(1 + 2 + 3 + … + n/k) k =
k * (n/k(n/k+1)/2) = n(n/k + 1)/2

 This is O(n2), so amortized time O(n) per
element added!

Sorting algorithm summary
 The ones we have

discussed
 Insertion Sort
 Selection Sort
 Merge Sort
 Quick Sort

 Other sorting
algorithms
 Heap Sort (uses priority queue)
 Shell Sort (in text)
 Bubble Sort (nice name, slow)
 Radix Sort
 Bin Sort
 Counting Sort

 Why so many?
 Stable sorts: Ins, Sel, Mer
 Worst-case O(n log n): Mer, Hea
 Expected-case O(n log n):

Mer, Hea, Qui
 Best for nearly-sorted sets: Ins
 No extra space needed: Ins, Sel,

Hea
 Fastest in practice: Qui
 Fastest on uniform integer keys

(O(n)!): Radix
 Least data movement: Sel

Problem complexity
 Asymptotically fastest sorting algorithms

are O(n lg n)
 kn lg n is an upper bound on run time (for some k)
 Can we do better?

 Some problems have an intrinsic
complexity -- no algorithm can do better
 Complexity of a problem is a lower bound because no

algorithm can run faster

 What is the intrinsic complexity of sorting?

n lg n
merge, quick

Fastest possible?

Lower bounds on sorting
 Goal: Determine the minimum time

required to sort n items (no matter what
order they come in)
 Want worst-case time for the best possible algorithm

 Assumption: sorting algorithm works by
comparing pairs of elements
 in general: that’s all you can do

The sorting job
 Sorting takes a array of n elements and

produces an array with elements in sorted order

 Sorting finds a permutation of the original array
 There are 1 × 2 × 3 × … × n = n! permutations
 Desired permutation is just the inverse permutation of the original

ordering

 Any sorting algorithm must decide which of n!
permutations will undo initial permutation

a1 a2 a3 a4 a5 a6

a4 a6 a1 a2 a5 a3

Comparison trees
 Any sorting algorithm performs some sequence of

comparisons, depending on input:
 Insertion sort on 2 3 1 4: 2<3? 3<1? 2<1? 3<4?
 Insertion sort on 1 3 2 4: 1<3? 2<3? 1<2? 3<4?

 Comparisons form a comparison tree
 At least n! leaves : every permutation must be a leaf
 Worst-case # comparisons = height of tree

a1a2a3 : a1< a2?

a1a2a3 : a2<a3 ? a2a1a3 : a1< a3?

a1a2a3 a2a1a3a1a3a2 : a1< a3? a2a3a1 : a2< a3?

a2a3a1 a3a2a1a1a3a2 a3a1a2

Comparison tree
for insertion sort

of three items

3

Time vs. Height
 Worst-case time for a

sorting method must
be ≥ the height of its
comparison tree
 The algorithm is doing more

than just comparisons, but
can use comparisons alone
for lower bound

 Minimum possible height for
a binary tree with x leaves
is lg x

 With n! leaves?
Height ≥ lg(n!) =
lg(1 × 2 × … × n) =
lg(1×n × 2×(n-1) × 3 × … × n/2)
= lg(1 × n) + lg (2 × (n-1)) + …
≥ (n/2) * lg n

 Any comparison-based sorting algorithm
must have a worst-case time of Ω(n lg n)
 Lower bound; so we use big-Omega (Ω) instead of big-O
 f(n) is Ω(n lg n) if there exists k such that f(n) ≥ kn for

large n

Using the Lower Bound on Sorting

Claim: I have a priority queue
 add time: O(1)
 removeMax time: O(1)

 True or false?

False (for general sets) because it could be used
to sort in time O(n) using heapsort.

Heapsort: insert all elements into priority queue,
extract in priority order.

Sorting in Linear Time
Several sorting methods take only linear time

 Counting Sort
 Sorts integers from a small range: [0..k] where k = O(n)

 Radix Sort
 The method used by card-sorters
 Sorting time O(dn) where d is the number of “digits”

 Others…

 How do they get around the
Ω(n lg n) lower bound?
 Don’t use comparisons: use keys as numbers to index into arrays

Lower vs. upper bounds
 Many problems have provable lower

bounds
 When algorithm is O(f(n)) and problem is Ω(f(n))…

great!

 But for many important problems, big
space between lower and upper bounds!
 Factoring
 Many games (e.g., chess)
 Traveling salesman and other optimization problems
 Boolean satisfiability
 Take 381/481 for more…

