
1

Lower bounds on
sorting
& Standard
collection ADTs

Lecture 19
CS211 Spring 06

Sorting algorithm summary
 The ones we have

discussed
 Insertion Sort
 Selection Sort
 Merge Sort
 Quick Sort

 Other sorting
algorithms
 Heap Sort (uses priority queue)
 Shell Sort (in text)
 Bubble Sort (nice name, slow)
 Radix Sort
 Bin Sort
 Counting Sort

 Why so many?
 Stable sorts: Ins, Sel, Mer
 Worst-case O(n log n): Mer, Hea
 Expected-case O(n log n):

Mer, Hea, Qui
 Best for nearly-sorted sets: Ins
 No extra space needed: Ins, Sel,

Hea
 Fastest in practice: Qui
 Fastest on uniform integer keys

O(n): Radix
 Least data movement: Sel

Problem complexity
 Asymptotically fastest sorting algorithms

are O(n lg n)
 kn lg n is an upper bound on run time (for some k)
 Can we do better?

 Some problems have an intrinsic
complexity -- no algorithm can do better
 Complexity of a problem is a lower bound because no

algorithm can run faster

 What is the intrinsic complexity of sorting?

n lg n
merge, quick

Fastest possible?

Lower bounds on sorting
 Goal: Determine the minimum time

required to sort n items (no matter what
order they come in)
 Want worst-case time for the best possible algorithm

 Assumption: sorting algorithm works by
comparing pairs of elements
 in general: that’s all you can do

The sorting job
 Sorting takes a array of n elements and

produces an array with elements in sorted order

 Sorting finds a permutation of the original array
 There are 1 × 2 × 3 × … × n = n! permutations

 Desired permutation is just the inverse
permutation of the original ordering

 Any sorting algorithm must decide which of n!
permutations will undo initial permutation

a1 a2 a3 a4 a5 a6

a4 a6 a1 a2 a5 a3

Comparison trees
 Any sorting algorithm performs some sequence

of comparisons, depending on input:
 Insertion sort on 2 3 1 4: 2<3? 3<1? 2<1? 3<4?
 Insertion sort on 1 3 2 4: 1<3? 2<3? 1<2? 3<4?

 Comparisons form a comparison tree
 At least n! leaves : every permutation must be a leaf
 Worst-case # comparisons = height of tree

a1a2a3 : a1< a2?

a1a2a3 : a2<a3 ? a2a1a3 : a1< a3?

a1a2a3 a2a1a3a1a3a2 : a1< a3? a2a3a1 : a2< a3?

a2a3a1 a3a2a1a1a3a2 a3a1a2

Comparison tree
for insertion sort

of three items

2

Time vs. Height
 Worst-case time for a

sorting method must
be ≥ the height of its
comparison tree
 The algorithm is doing more

than just comparisons, but
can use comparisons alone
for lower bound

 Minimum possible
height for a binary tree
with x leaves is lg x

 With n! leaves?
Height ≥ lg(n!) =
lg(1 × 2 × … × n) =
lg(1×n × 2×(n-1) × 3 × … × n/2)
= lg(1 × n) + lg (2 × (n-1)) + …

≥ (n/2) * lg n
 Any comparison-based

sorting algorithm must
have a worst-case time
of Ω(n lg n)
 Lower bound; so we use big-

Omega (Ω) instead of big-O

Using the Lower Bound on Sorting

Claim: I have a priority queue
 add time: O(1)
 removeMax time: O(1)

 True or false?

False (for general sets) because it could be used
to sort in time O(n) using heapsort.

Heapsort: insert all elements into priority queue,
extract in priority order.

Sorting in Linear Time
Several sorting methods take only linear time

 Counting Sort
 Sorts integers from a small range: [0..k] where k = O(n)

 Radix Sort
 The method used by card-sorters
 Sorting time O(dn) where d is the number of “digits”

 Others…

 How do they get around the
Ω(n lg n) lower bound?
 Don’t use comparisons: use keys as numbers to index into arrays

Collection ADTs
 What are the useful abstractions for

organizing data in collections?
 So far: sets, priority queues

 How can they be implemented efficiently?
 So far: lists, arrays, trees

 This lecture: more useful abstractions (but
not how to implement them).

Set abstractions
class Set<T> {

boolean contains(T elem);
}

 Mutable sets: elements can be added and
removed from set (the usual approach)
void add(T elem)

 Immutable sets: sets don’t change. Insertion or
union produce new sets
Set add(T elem)
Set union(Set<T> s)
 Implementable with data structures that share data (e.g., lists,

trees), useful when related sets must coexist.

Set abstractions, cont’d
 Unordered sets:

 No ordering on elements
 Iterator produces elements in no particular order
 No way to get from one element to next or previous
 The basic abstraction & the most efficient approach if you don’t

need ordering

 Ordered sets:
 Elements are (abstractly!) kept in sorted order, can be iterated in

order.
 May be able to search within a range
 May be able to find next or previous element in order
 Useful if elements have natural ordering (e.g., dates)
 Usually implemented as trees

 Bags (multisets): can contain same element
more than once

3

Map abstractions
class Map<K, V> {
V get(K key);

}

 Maintains an association between keys
and values

 Every key occurs only once
 Can look up value associated with a key
 Also known as associative arrays,

dictionaries (esp. with string keys)
 Java interface: java.util.Map

Map varieties
 Mutable maps

 void put(K key, V value)

 Immutable maps
 Map put(K key, V value) // non-destructive

 Unusual, implementable as tree

 Ordered maps: mappings are ordered by keys
 Can view a map a set of (key, value) pairs where two pairs are

considered “equal” or “less than” if their keys are.
 Implemented as a tree with key and value at each node.

 Can use as an index.
 Example: Collection of employee records might be a set of

objects.
 Might also have several maps as indices: from employee name to

record object, from employee number to record object, …

Queues
 Queues contain elements but do not

support random lookup

 FIFO queues
 Push at one end, pop at the other
 Helpful for delaying work (buffering)

 LIFO queues (stacks)
 Push and pop from top
 Good for saving and restoring state

 Priority queues
 Elements have priority, are popped in priority order.

push pop

push

pop

Summary
 Several useful abstractions for organizing,

finding, updating information
 Choose the right abstraction for your

program
 May use several abstractions together

 Next: how to implement unordered sets
and maps efficiently

