
1

Lower bounds on
sorting
& Standard
collection ADTs

Lecture 19
CS211 Spring 06

Sorting algorithm summary
 The ones we have

discussed
 Insertion Sort
 Selection Sort
 Merge Sort
 Quick Sort

 Other sorting
algorithms
 Heap Sort (uses priority queue)
 Shell Sort (in text)
 Bubble Sort (nice name, slow)
 Radix Sort
 Bin Sort
 Counting Sort

 Why so many?
 Stable sorts: Ins, Sel, Mer
 Worst-case O(n log n): Mer, Hea
 Expected-case O(n log n):

Mer, Hea, Qui
 Best for nearly-sorted sets: Ins
 No extra space needed: Ins, Sel,

Hea
 Fastest in practice: Qui
 Fastest on uniform integer keys

O(n): Radix
 Least data movement: Sel

Problem complexity
 Asymptotically fastest sorting algorithms

are O(n lg n)
 kn lg n is an upper bound on run time (for some k)
 Can we do better?

 Some problems have an intrinsic
complexity -- no algorithm can do better
 Complexity of a problem is a lower bound because no

algorithm can run faster

 What is the intrinsic complexity of sorting?

n lg n
merge, quick

Fastest possible?

Lower bounds on sorting
 Goal: Determine the minimum time

required to sort n items (no matter what
order they come in)
 Want worst-case time for the best possible algorithm

 Assumption: sorting algorithm works by
comparing pairs of elements
 in general: that’s all you can do

The sorting job
 Sorting takes a array of n elements and

produces an array with elements in sorted order

 Sorting finds a permutation of the original array
 There are 1 × 2 × 3 × … × n = n! permutations

 Desired permutation is just the inverse
permutation of the original ordering

 Any sorting algorithm must decide which of n!
permutations will undo initial permutation

a1 a2 a3 a4 a5 a6

a4 a6 a1 a2 a5 a3

Comparison trees
 Any sorting algorithm performs some sequence

of comparisons, depending on input:
 Insertion sort on 2 3 1 4: 2<3? 3<1? 2<1? 3<4?
 Insertion sort on 1 3 2 4: 1<3? 2<3? 1<2? 3<4?

 Comparisons form a comparison tree
 At least n! leaves : every permutation must be a leaf
 Worst-case # comparisons = height of tree

a1a2a3 : a1< a2?

a1a2a3 : a2<a3 ? a2a1a3 : a1< a3?

a1a2a3 a2a1a3a1a3a2 : a1< a3? a2a3a1 : a2< a3?

a2a3a1 a3a2a1a1a3a2 a3a1a2

Comparison tree
for insertion sort

of three items

2

Time vs. Height
 Worst-case time for a

sorting method must
be ≥ the height of its
comparison tree
 The algorithm is doing more

than just comparisons, but
can use comparisons alone
for lower bound

 Minimum possible
height for a binary tree
with x leaves is lg x

 With n! leaves?
Height ≥ lg(n!) =
lg(1 × 2 × … × n) =
lg(1×n × 2×(n-1) × 3 × … × n/2)
= lg(1 × n) + lg (2 × (n-1)) + …

≥ (n/2) * lg n
 Any comparison-based

sorting algorithm must
have a worst-case time
of Ω(n lg n)
 Lower bound; so we use big-

Omega (Ω) instead of big-O

Using the Lower Bound on Sorting

Claim: I have a priority queue
 add time: O(1)
 removeMax time: O(1)

 True or false?

False (for general sets) because it could be used
to sort in time O(n) using heapsort.

Heapsort: insert all elements into priority queue,
extract in priority order.

Sorting in Linear Time
Several sorting methods take only linear time

 Counting Sort
 Sorts integers from a small range: [0..k] where k = O(n)

 Radix Sort
 The method used by card-sorters
 Sorting time O(dn) where d is the number of “digits”

 Others…

 How do they get around the
Ω(n lg n) lower bound?
 Don’t use comparisons: use keys as numbers to index into arrays

Collection ADTs
 What are the useful abstractions for

organizing data in collections?
 So far: sets, priority queues

 How can they be implemented efficiently?
 So far: lists, arrays, trees

 This lecture: more useful abstractions (but
not how to implement them).

Set abstractions
class Set<T> {

boolean contains(T elem);
}

 Mutable sets: elements can be added and
removed from set (the usual approach)
void add(T elem)

 Immutable sets: sets don’t change. Insertion or
union produce new sets
Set add(T elem)
Set union(Set<T> s)
 Implementable with data structures that share data (e.g., lists,

trees), useful when related sets must coexist.

Set abstractions, cont’d
 Unordered sets:

 No ordering on elements
 Iterator produces elements in no particular order
 No way to get from one element to next or previous
 The basic abstraction & the most efficient approach if you don’t

need ordering

 Ordered sets:
 Elements are (abstractly!) kept in sorted order, can be iterated in

order.
 May be able to search within a range
 May be able to find next or previous element in order
 Useful if elements have natural ordering (e.g., dates)
 Usually implemented as trees

 Bags (multisets): can contain same element
more than once

3

Map abstractions
class Map<K, V> {
V get(K key);

}

 Maintains an association between keys
and values

 Every key occurs only once
 Can look up value associated with a key
 Also known as associative arrays,

dictionaries (esp. with string keys)
 Java interface: java.util.Map

Map varieties
 Mutable maps

 void put(K key, V value)

 Immutable maps
 Map put(K key, V value) // non-destructive

 Unusual, implementable as tree

 Ordered maps: mappings are ordered by keys
 Can view a map a set of (key, value) pairs where two pairs are

considered “equal” or “less than” if their keys are.
 Implemented as a tree with key and value at each node.

 Can use as an index.
 Example: Collection of employee records might be a set of

objects.
 Might also have several maps as indices: from employee name to

record object, from employee number to record object, …

Queues
 Queues contain elements but do not

support random lookup

 FIFO queues
 Push at one end, pop at the other
 Helpful for delaying work (buffering)

 LIFO queues (stacks)
 Push and pop from top
 Good for saving and restoring state

 Priority queues
 Elements have priority, are popped in priority order.

push pop

push

pop

Summary
 Several useful abstractions for organizing,

finding, updating information
 Choose the right abstraction for your

program
 May use several abstractions together

 Next: how to implement unordered sets
and maps efficiently

