

Problem complexity

- Asymptotically fastest sorting algorithms are $\mathrm{O}(n \lg n)$
- $k n \lg n$ is an upper bound on run time (for some k) - Can we do better?
- Some problems have an intrinsic complexity -- no algorithm can do better
- Complexity of a problem is a lower bound because no algorithm can run faster

What is the intrinsic complexity of sorting?

The sorting job

- Sorting takes a array of n elements and produces an array with elements in sorted order

$$
\underbrace{}_{a_{4} a_{1} a_{2} a_{5} a_{3} a_{3} a_{4} a_{5} a_{6}}
$$

- Sorting finds a permutation of the original array - There are $1 \times 2 \times 3 \times \ldots \times n=n!$ permutations
- Desired permutation is just the inverse permutation of the original ordering
- Any sorting algorithm must decide which of n ! permutations will undo initial permutation

Sorting algorithm summary

- The ones we have discussed
- Insertion Sort
- Selection Sort
- Merge Sort
- Quick Sort
- Other sorting algorithms
- Heap Sort (uses priority queue)
- Shell Sort (in text)
- Bubble Sort (nice name, slow)
- Radix Sort
- Bin Sort
- Counting Sort
- Why so many?
- Stable sorts: Ins, Sel, Mer
- Worst-case $O(n \log n)$: Mer, Hea
- Expected-case O($n \log n$): Mer, Hea, Qui
- Best for nearly-sorted sets: Ins
- No extra space needed: Ins, Sel, Hea
Fastest in practice: Qui
- Fastest on uniform integer keys O(n): Radix
Least data movement: Sel

Lower bounds on sorting

- Goal: Determine the minimum time required to sort n items (no matter what order they come in)
- Want worst-case time for the best possible algorithm
- Assumption: sorting algorithm works by comparing pairs of elements
- in general: that's all you can do

Comparison trees

- Any sorting algorithm performs some sequence of comparisons, depending on input:
- Insertion sort on 2314 : $2<3$? $3<1$? $2<1$? $3<4$?
- Insertion sort on 132 4: 1<3? 2<3? 1<2? 3<4?
- Comparisons form a comparison tree
- At least n ! leaves : every permutation must be a leaf
- Worst-case \# comparisons = height of tree

Time vs. Height

- Worst-case time for a sorting method must be \geq the height of its comparison tree
- The algorithm is doing more than just comparisons, but can use comparisons alone for lower bound
- Minimum possible height for a binary tree with x leaves is $\lg x$
- With n! leaves?

Height $\geq \lg (n!)=$
$\lg (1 \times 2 \times \ldots \times n)=$ $\lg (1 \times n \times 2 \times(n-1) \times 3 \times \ldots \times n / 2)$ $=\lg (1 \times n)+\lg (2 \times(n-1))+\ldots$ $\geq(n / 2) * \lg n$

- Any comparison-based sorting algorithm must have a worst-case time of $\Omega(\mathrm{n} \lg \mathrm{n})$
Lower bound; so we use bigOmega (Ω) instead of big-O

Using the Lower Bound on Sorting

Claim: I have a priority queue

- add time: $O(1)$
- removeMax time: O(1)
- True or false?

False (for general sets) because it could be used to sort in time $\mathrm{O}(n)$ using heapsort.

Heapsort: insert all elements into priority queue, extract in priority order.

Collection ADTs

- What are the useful abstractions for organizing data in collections?
- So far: sets, priority queues
- How can they be implemented efficiently? - So far: lists, arrays, trees
- This lecture: more useful abstractions (but not how to implement them).
How do they get around the $\Omega(\mathrm{n} \lg \mathrm{n})$ lower bound?
- Don't use comparisons: use keys as numbers to index into arrays

Set abstractions

```
class Set<T> {
    boolean contains(T elem);
}
```

- Mutable sets: elements can be added and removed from set (the usual approach) void add(T elem)
- Immutable sets: sets don't change. Insertion or union produce new sets
set add(T elem)
Set union(Set<T> s)
- Implementable with data structures that share data (e.g., lists, trees), useful when related sets must coexist.

Set abstractions, cont'd

- Unordered sets:
- No ordering on elements
- Iterator produces elements in no particular order
- No way to get from one element to next or previous
- The basic abstraction \& the most efficient approach if you don't need ordering
- Ordered sets:
- Elements are (abstractly!) kept in sorted order, can be iterated in order.
- May be able to search within a range
- May be able to find next or previous element in order
- Useful if elements have natural ordering (e.g., dates)
- Usually implemented as trees
- Bags (multisets): can contain same element more than once

```
Map abstractions
class Map<K, V> {
    V get(K key);
}
- Maintains an association between keys
    and values
- Every key occurs only once
- Can look up value associated with a key
- Also known as associative arrays,
    dictionaries (esp. with string keys)
- Java interface: java.util.Map
```


Map varieties

- Mutable maps
- void put(K key, v value)
- Immutable maps
- Map put(K key, v value) // non-destructive
- Unusual, implementable as tree
- Ordered maps: mappings are ordered by keys
- Can view a map a set of (key, value) pairs where two pairs are considered "equal" or "less than" if their keys are.
- Implemented as a tree with key and value at each node
- Can use as an index.
- Example: Collection of employee records might be a set of objects.
- Might also have several maps as indices: from employee name to record object, from employee number to record object,

Summary

- Several useful abstractions for organizing, finding, updating information
- Choose the right abstraction for your program
- May use several abstractions together
- Next: how to implement unordered sets and maps efficiently

