Lower bounds on
sorting
‘, & Standard

ll
‘%* - collection ADTs

Lecture 19
CS211 Spring 06

Sorting algorithm summary

The ones we have

discussed Why so many?
o Insertion Sort o Stable sorts: Ins, Sel, Mer
o Selection Sort o Worst-case O(n log n): Mer, Hea
o Merge Sort o Expected-case O(n log n):
o Quick Sort Mer, Hea, Qui

o Best for nearly-sorted sets: Ins
Other sorting o No extra space needed: Ins, Sel,
algorithms Hea

o

Fastest in practice: Qui

Fastest on uniform integer keys
O(n): Radix

o Least data movement: Se/

o Heap Sort (uses priority queue)
Shell Sort (in text)

Bubble Sort (nice name, slow)
Radix Sort

Bin Sort

Counting Sort

o

(=R = = e e}

Problem complexity

Asymptotically fastest sorting algorithms
are O(nlg n)

o kn g nis an upper bound on run time (for some k)
o Can we do better?

Some problems have an intrinsic
complexity -- no algorithm can do better

o Complexity of a problem is a lower bound because no
algorithm can run faster nlgn

merge, quick

Fastest possible?

What is the intrinsic complexity of sorting?

Lower bounds on sorting

Goal: Determine the minimum time
required to sort n items (no matter what
order they come in)

o Want worst-case time for the best possible algorithm

Assumption: sorting algorithm works by
comparing pairs of elements
o in general: that’s all you can do

The sorting job

Sorting takes a array of n elements and
produces an array with elements in sorted order

a,a,a;a,a5a,

a,dga,a,a54a,

Sorting finds a permutation of the original array
o Thereare 1 x 2x 3 x ... x n = n! permutations

Desired permutation is just the inverse
permutation of the original ordering

Any sorting algorithm must decide which of n!
permutations will undo initial permutation

Comparison trees

Any sorting algorithm performs some sequence
of comparisons, depending on input:

o Insertion sorton 23 14: 2<3? 3<1? 2<17? 3<4?

o Insertion sorton 13 24: 1<3? 2<3? 1<2? 3<4?

Comparisons form a comparison tree
o Atleast n! leaves : every permutation must be a leaf
o Worst-case # comparisons = height of tree

aja,a;3: a4< a,?

Comparison tree aja,a; : @y<az ? a,a,a; 1 a< a3?
for insertion sort
ofthreeitems 212233 21333, a< 837 2,213; 3,333, 1 3,< 3,7

aa;a, a;a,a, a,aza, aza,a,

Time vs. Height

Worst-case time for a Minimum possible
sorting method must hf,’t'ﬁhtlfo" a bmalry tree
be = the height of its ‘\’/VV'_thX 'ela"es Sox
. Ith n! leaves
comparison tree Height = Ig(n!) =
o The algorithm is doing more g1 x 2% ... x n) =
than just comparisons, but 1g(1xn x 2x(n-1) x 3 x ... x n/2)
can use comparisons alone =1g(1x n)+1g (2 x (n-1)) + ...
for lower bound =(n/2)*Ign

Any comparison-based

sorting algorithm must

have a worst-case time

of Q(nlgn)

o Lower bound; so we use big-
Omega (Q) instead of big-O

Using the Lower Bound on Sorting

Claim: | have a priority queue
o add time: O(1)
o removeMax time: O(1)

True or false?

False (for general sets) because it could be used
to sort in time O(n) using heapsort.

Heapsort: insert all elements into priority queue,
extract in priority order.

Sorting in Linear Time

Several sorting methods take only linear time

o Counting Sort

Sorts integers from a small range: [0..k] where k = O(n)
o Radix Sort

The method used by card-sorters

Sorting time O(dn) where d is the number of “digits”
o Others...

How do they get around the
Q(n Ig n) lower bound?
o Don’t use comparisons: use keys as numbers to index into arrays

Collection ADTs

What are the useful abstractions for
organizing data in collections?

o So far: sets, priority queues

How can they be implemented efficiently?
o So far: lists, arrays, trees

This lecture: more useful abstractions (but
not how to implement them).

Set abstractions

class Set<T> {
boolean contains(T elem);

}

Mutable sets: elements can be added and
removed from set (the usual approach)

void add(T elem)

Immutable sets: sets don’t change. Insertion or

union produce new sets

Set add(T elem)

Set union(Set<T> s)

o Implementable with data structures that share data (e.g., lists,
trees), useful when related sets must coexist.

Set abstractions, cont’d

Unordered sets:

No ordering on elements

Iterator produces elements in no particular order

No way to get from one element to next or previous

The basic abstraction & the most efficient approach if you don’t
need ordering

Ordered sets:

o Elements are (abstractly!) kept in sorted order, can be iterated in
order.

May be able to search within a range

May be able to find next or previous element in order
Useful if elements have natural ordering (e.g., dates)
Usually implemented as trees

Bags (multisets): can contain same element
more than once

00 oo

00 0o o

Map abstractions

class Map<K, V> {
V get(K key);

}
Maintains an association between keys
and values
Every key occurs only once
Can look up value associated with a key
Also known as associative arrays,
dictionaries (esp. with string keys)
Java interface: java.util.Map

Map varieties

Mutable maps

0 void put(K key, V value)

Immutable maps

0 Map put(K key, V value) // non-destructive
o Unusual, implementable as tree

Ordered maps: mappings are ordered by keys

o Can view a map a set of (key, value) pairs where two pairs are
considered “equal” or “less than” if their keys are.

o Implemented as a tree with key and value at each node.

Can use as an index.
o Example: Collection of employee records might be a set of
objects.
Might also have several maps as indices: from employee name to
record object, from employee number to record object, ...

Queues

Queues contain elements but do not
support random lookup

FIFO queues push— | [F>pop

o Push at one end, pop at the other
o Helpful for delaying work (buffering)

LIFO queues (stacks) vush: T
a Push and pop from top pop
o Good for saving and restoring state

Priority queues
o Elements have priority, are popped in priority order.

Summary

Several useful abstractions for organizing,
finding, updating information

Choose the right abstraction for your
program

o May use several abstractions together

Next: how to implement unordered sets
and maps efficiently

