
1

More programming advice

CS 211 Spring 2006
Andrew Myers

2

Documentation is code
 Comments (esp. specifications) are as important

as “real code”
 determine successful use of code
 determine whether code can be maintained
 creation/maintenance = 1/10

 Documentation belongs in code or as close as
possible
 Code evolves, documentation drifts away
 Put specs in comments next to code when possible
 Separate documentation? Code should link to it.

 Avoid breaking up code with documentation
 x = x + 1; // add one to x -- Yuck!
 Need to document algorithm? Write a paragraph at the top. Or

break method into smaller, clearer pieces.

3

Choosing names
 Long names are not specs
int searchForElement(int[] array_of_elements,

 int element_to_look_for);

vs.
/** clear spec. */
int search(int[] a, int x);
 Don’t try to document an algorithm with variable names.

one_plus_length = the_length + 1; // one more than the length
vs.
m = n + 1;

 Names should be short but suggestive
 Local variable names should usually be short.

4

Know your audience
 Code and specs have a target audience

beyond Java compiler: programmers who
use and maintain it

 Goal:
 Enough documented detail so they can understand it
 Avoid belaboring the obvious
 Be brief!

 Try it out on the audience when possible
 design reviews before coding
 code reviews

5

Consistency

 Pick a consistent coding style, stick with it
 Teams should agree on common style

 Match style when editing someone
else’s code

 Not just syntax, also design style

6

Exposing the rep
 In Java 1.1, a security-critical class (the class of

all class objects, Class):
 class Class {
 private Object[] signers;
 Object[] getSigners() {
 return signers;
 }
 }

 Not too secure!
 Problem: exposes the representation to clients
 Options:

 Copy state to new object
 Add observers for observing state components, e.g.

int numSigners();
Object getSigner(int i);

2

7

Inheritance vs. encapsulation
 Inheritance is overused by most Java (& OO)

programmers
 class C extends D means state of D,

methods of D are accessible in C
 Tempting and dangerous!

 C becomes a subtype of D
 Inherit only if a C should be used as a D

 all methods of D should still make sense
 A function expecting a D will work on a C

 Try to use Java interfaces instead
 D implements I, C implements I
 Avoids coupling C and D code

8

Copying code spreads bugs
 Biggest single source of program errors:

copying code
 Bug fixes never reach all the copies
 Think thrice before using your editor’s copy-and-

paste function

 Abstract instead of copying!
 Write many calls to a single function rather than

copying the same block of code around

^V

9

Avoid duplication
 Duplication in source code creates an

implicit constraint to maintain, a quick path
to failure
 Duplicating code fragments (by copying)
 Duplicating specs in classes and in interfaces
 Duplicating specifications in code and in external documents
 Duplicating same information on many web pages

 Solutions:
 Named abstractions (e.g., declaring functions)
 Indirection (linking pointers)
 Generate duplicate information from source (e.g., Javadoc!)

 If you must duplicate:
 Make duplicates link to each other so always can find all clones

10

Design vs. programming by example

 Programming by example:
 Copy (!) code that does something like what you want,

hack it until it works

 Problems:
 don’t understand code fully
 usually inherit unwanted functionality and bugs
 a bolted-together hodge-podge is hard to understand

or maintain

 Alternative: design
 Understand exactly why your code works
 Reuse abstractions, not code templates

11

Avoid premature optimization
 What people do for speed:

 Copy code to avoid overhead of abstraction
mechanisms

 Use more complex algorithms & data structures
 Violate abstraction barriers

 Result: less simple and clear
 Result: performance gains often negligible
 Avoid trying to accelerate performance till:

 The program is designed and working
 You know that simplicity needs to be sacrificed
 You know where simplicity needs to be sacrificed

12

How to make your group project harder

1. Have one person do all the work, so she burns
out no one can finish the project

2. Decide that the other member(s) of your group
are useless and don't communicate or meet
with them.

3. 1+2: decide that all the other members of your
group are useless and you are the lone master
hacker. Charge off and code everything up
without talking to anyone else. Unless you are
very unlucky, you'll make some bad
assumption that forces all your code to be
thrown out anyway.

3

13

How to make your group project harder,
part 2
4. Everyone implements pieces of the system with no

discussion of how they will fit together until just before
the assignment is due. You won’t be able to glue it all
together in time.

5. Work extremely closely all the time, spending all your
time talking rather than doing actual implementation;
the group will slow down to the speed of one person.

• For extra effectiveness, everyone simultaneously edits different files in
the same directory. Something is always broken, testing impossible.

6. Don't start until three days before the assignment is
due. Pull three all-nighters in a row. With lack of sleep
you will write broken code. With luck, you will get sick,
blow some other classes too!

14

How to make your group project harder,
part 3

7. Don't ask the TAs or the professor any
questions when design problems come up; put
off working on the project and hope the
problems will magically solve themselves.

8. Don't use any of the techniques for software
design that you learn in this class. This works
best if you don't attend class at all -- avoid
polluting your mind.

15

No silver bullets
 These are rules of thumb; every rule has

exceptions
 Following software engineering rules only

makes success more likely!

