
1

Inheritance

Lecture 7
CS211 – Fall 2005

(Corresponds to Lecture 11,
CS 211 Spring 2006)

Gregor Johann Mendel (1822 - 1884)

What is Inheritance?

• OO-programming = Encapsulation + Extensibility
• Encapsulation: permits code to be used without knowing

implementation details
• Extensibility: permits behavior of classes to be changed or

extended without having to rewrite the code of the class
 No need to involve the class implementer

• Mechanism for extensibility in OO-programming:
 Inheritance

• Inheritance promotes code reuse

Running Example: Puzzle

class Puzzle {

 //representation of a puzzle state
 private int state;

 //create a new random instance
 public void scramble() {...}

 //say which tile occupies a given position
 public int tile(int r, int c) {...}

 //move a tile
 public boolean move(char c) {...}
}

New Requirement
Suppose you are the client. After receiving puzzle code, you
decide you want the code to keep track of the number of
moves made since the last scramble operation.

Implementation is simple:
 Keep a counter numMoves, initialized to 0
 move method increments counter
 scramble method resets counter to 0
 New method printNumMoves for printing value of counter

Implementation

• Three approaches:
 Call supplier, apologize profusely, and send them a

new specification. They implement it and charge you
an extra $5K.

 Rewrite the supplier’s code yourself. Three months
later, you still haven’t figured it out.

 Use inheritance to define a new class that extends the
behavior of the supplier’s class.

Goal
• Define a new class EPuzzle that extends the class

Puzzle
• Tell Java that EPuzzle is just like Puzzle, except:

 it has a new integer instance variable named numMoves
 it has a new instance method called printNumMoves
 it has modified versions of scramble and move methods

2

Picture

state
scramble()

tile()
move()

Puzzle EPuzzle
 state
scramble()
 tile()
 move()

numMoves
printNumMoves()

class EPuzzle extends Puzzle {
 private int numMoves = 0;
 public void scramble() {...}
 public boolean move(char d) {...}
 public void printNumMoves() {...}
}

• Class EPuzzle is a subclass of class Puzzle
• Class Puzzle is a superclass of class EPuzzle
• An EPuzzle object has

 its own instance variable numMoves and instance method printNumMoves
 it overrides methods scramble and move in class Puzzle
 it inherits method tile from class Puzzle

Overriding

• A method declaration m in subclass B overrides a
method m in superclass A if both methods have
 the same name,
 both are class methods or both are instance methods,

and
 both have the same number and type of parameters and

same return type

Class Hierarchy

Object

Puzzle Array

EPuzzleSubclass of Puzzle

Superclass of EPuzzle

Direct superclass
(parent) of EPuzzle

Every class (except Object) has a unique direct
superclass, called the parent class of that class.

…….

Single Inheritance
• Every class is implicitly a subclass of Object
• A class can extend exactly one other class

 class Puzzle {…}
• This class implicitly extends Object

 class EPuzzle extends Puzzle {…}
• This class explicitly extends Puzzle, and implicitly extends Object

since Puzzle is a subclass of Object

• Class hierarchy in Java is a tree
• In C++, a class can have more than one superclass

(multiple inheritance)
 Class hierarchy is a directed acyclic graph (dag)

Writing the EPuzzle Class

class EPuzzle extends Puzzle {
 private int numMoves = 0;

 public void printNumMoves() {
 System.out.println("Number of moves = "
 + numMoves);
 }

 //other method definitions
 ...
}

3

scramble and move

• Problem: state was declared to be a private variable in class Puzzle, so it is not
accessible to methods in class EPuzzle

How should we write these methods?
One option: write them from scratch.

Class EPuzzle extends Puzzle {
 private int numMoves = 0;

 public void scramble() {
 state = "978654321";
 numMoves = 0;
 }
}

Difficulty with Private Variables
• Variable state is declared private, so it is only

accessible to instance methods in class Puzzle
• In an instance of class EPuzzle, the tile method can

access this variable because method tile is inherited
from the superclass

• Method scramble defined in class Epuzzle does not
have access to state

• Similarly, any private methods in a superclass are
not accessible to methods in subclass

Interesting Point

• EPuzzle objects have an instance variable for state because EPuzzle
extends Puzzle

• However, state is accessible only to methods inherited from Puzzle
(such as tile()) and not to methods written in EPuzzle class (such as
scramble()) because state was declared to be private

EPuzzle
 state
scramble()
 tile()

 move()
numMoves

printNumMoves()

Protected Access
• New access specifier: protected
• A protected instance variable in class S can be accessed by

instance methods defined either in class S or in a subclass
of S

• A protected method in class S can be invoked from an
instance method defined in class S or in a subclass of S

• Access checks are done by compiler at compile time:
 For an invocation r.m():

• Determine type of reference r
• Does the corresponding class/interface have a method named m with

appropriate arguments?
• Are the access specifiers of that method appropriate?

Proper Code for Puzzle Class

class Puzzle {
 protected int state;
 public void scramble(){...}
 ...
}

says state is
accessible from
subclasses

Code for EPuzzle

class EPuzzle extends Puzzle {
 protected int numMoves = 0;

 public void printNumMoves(){
 System.out.println("Number of moves = "
 + numMoves);
 }
 public void scramble() {
 state = "978654321"; //OK since state is inherited
 numMoves = 0;
 }
 //similar code for move
}

4

Protected Access
• Should all instance variables and methods be declared

protected?
• Need to think about extensibility: if you believe that

subclasses will want access to a member, it should be
declared protected

• Analogy:
 Which components of a car might a user want to upgrade?
 What wires/sub-systems need to be exposed to make the upgrade

easy?
• Extending a class requires more knowledge of the class

than is needed just to use it

Another Solution

• Suppose subclass S overrides a method m in its superclass.
• Methods in subclass S can invoke an overridden method of

superclass as
 super.m()
• Caveats:

 Cannot compose super many times as in super.super.m()
 Static binding: super.m is resolved at compile-time, so no object

look-up at runtime

Another Definition of EPuzzle
class EPuzzle extends Puzzle {
 protected int numMoves = 0;
 ...
 public void scramble() {
 super.scramble();
 numMoves = 0;
 }
 public boolean move(char d){
 boolean p = super.move(d);
 if (p) numMoves++; //legal move?
 return p;
 }
}

Do not need protected access to state!

Subtypes

• Inheritance gives a mechanism in Java for creating subtypes
 (Java interfaces are another such mechanism)

• If class B extends class A then B is a subtype of A
• Examples:

 Puzzle p = new EPuzzle(); //up-casting
 EPuzzle e = (EPuzzle)p; //down-casting

Unexpected Consequence
A method that overrides a superclass method cannot have more restricted
access than the superclass method

class A {
 public int m() {...}
}

class B extends A {
 private int m() {...} //illegal!
}

A supR = new B(); //upcasting
supR.m(); //will invoke private method in
class B at runtime!

Shadowing Variables
• Like overriding, but for fields instead of methods

 Superclass: variable v of some type
 Subclass: variable v perhaps of some other type
 Method in subclass can access shadowed variable by using super.v

• Variable references are resolved using static binding (i.e., at
compile-time), not dynamic binding (i.e., not at runtime)

Variable reference r.v
• Uses static type of the variable r, not runtime type of the object

referred to by r

• Shadowing variables is bad medicine and should be avoided

5

Constructors

• No overriding of constructors: each class has its own
constructor

• Superclass constructor can be invoked explicitly within
subclass constructor by invoking super() with parameters
as needed

• Can invoke other constructors of the same class using
this()

• Call to super() or this() must occur first in the constructor

Abstract Classes

• An abstract class cannot be instantiated
• May have methods without bodies that must be overridden by

a (non-abstract) subclass

abstract class Puzzle {
 protected int state;
 public void scramble() {
 state = 978654321;
 }

 //abstract methods (no code)
 abstract public int tile(int r, int c);
 abstract public void move(char d);
}

Abstract Classes
• An abstract class is an incomplete specification

 Cannot be instantiated directly
 Not all methods in abstract class need to be abstract
― allows code sharing

 Abstract classes are part of the class hierarchy and
the usual subtyping rules apply

Use of Abstract Classes

• Variables/methods common to a bunch of related subclasses
can be declared once in Dad and inherited by all subclasses

• If subclass C wants to do something differently, it can
override Dad’s methods as needed

A B C

abstract class Dad

Conclusion
• Key features of OO-programming

 Encapsulation: classes and access control
 Inheritance: extending or changing the behavior of

classes without rewriting them from scratch
 Dynamic storage allocation (new) & garbage collection
 Access control: public/private/protected
 Subtyping

