

 1

Lecture 9: Writing and
documenting code

Andrew Myers
CS 211 Spring 2006

2

Divide-and-conquer programming

 Break program into manageable parts that
can be implemented, tested in isolation

 Define interfaces for parts to talk to each
other

 Make sure contracts are obeyed
 Clients use interfaces correctly
 Implementers implement interfaces correctly (test!)

 Key: good interface documentation
 Java problem: class interface is mixed in with rest of

class definition. Want a separate presentation.

3

Javadoc
 Extracts documentation from classes, interfaces

 Requires properly formatted comments

 Produces browsable, hyperlinked HTML web
pages

 An important Java tool for presenting code
interfaces!

 Some languages (e.g. C++) have separate
interface files (“header files” aka “.h files”)
 Provides a separate check that interface is correct
 Javadoc: convenient, a little dangerous…

Java source code
(many files)

Linked HTML
Web pages

javadoc

4

Java API
 Javadoc documentation on standard Java

libraries available at
http://java.sun.com/j2se/1.5.0/docs/api/

(demo)

5

Developing and documenting an ADT

 Abstraction: a closed interval [a,b] on the
real number line. [a,b] = { x | a ≤ x ≤ y }

 How to define a Java interface for this
ADT?

1. Write an overview for the ADT.

/** An Interval represents a
 * closed interval [a,b]
 * on the real number line.
 */

Javadoc comment

Abstract
description
of values of
ADT.

6

2. Identify operations
Decide on the right set of operations for the

ADT to support
 Should be enough operations for needed tasks
 Avoid unnecessary operations that client could

implement efficiently without access to internals of
class

 2

7

3. Write method specs
Write specifications for each operation
(method).
 Signature: types of method arguments, return.
 Description of what the method does (abstractly).

 Good (definitional):
/** Add two intervals. The sum of two intervals is
 * a set of values containing all possible sums of
 * two values, one from each of the two intervals. */
public Interval plus(Interval i);

 Bad: (operational):
/** Return a new Interval with lower bound a+i.a,
 * upper bound b+i.b. */

 Not abstract, might as well read the code…

8

Parts of a method spec

/** Add two intervals. The sum of two intervals is
 * a set of values containing all possible sums of
 * two values, one from each of the two intervals.
 *
 * @param i the other interval
 * @return the sum of the two intervals
 */

Method overview

Method description

Additional tagged clauses

 Attach before methods of class or interface.
 No need in class if it impls interface with specs

9

Some useful Javadoc tags
 @return description

 Use to describe the return value of the method, if any
 E.g., @return the sum of the two intervals

 @param parameter-name description
 Describes the parameters of the method
 E.g., @param i the other interval

 @author name
 @deprecated reason
 @see package.class#member
 {@code expression}

 Put expression in code font
10

More thoughts on programming
 Careful interface design makes program

development more likely to succeed
 Many other ways to make program

development easier (or harder)…
 Applies to other engineering too…

11

Design is faster than debugging
 Timeline is Design ⇒ Code ⇒ Debug
 Timeline like this?

 Common error: not enough time spent designing

 Extra time designing reduces coding and
debugging time
 Speed, not haste
 An ounce of prevention…

design write code debug

design write code debug

design write code debug

12

Pair programming
 Work in pairs
 Pilot/copilot

 Pilot codes, copilot directs
 Pilot must convince copilot that code works

 Or: work more independently
 frequent design review: both programmers must

convince the other

 Reduces debugging time

 3

13

Simplicity
The present letter is a very long one, simply because I had

no time to make it shorter. –Blaise Pascal
Be brief. –Strunk & White

 Applies to programming… simple code is:
 Easier and quicker to understand
 More likely to work correctly

 Good code is simple, short, and clear
 Save complex algorithms, data structures for where

they are needed.
 Always reread code (and writing) to see if it can be

made shorter, simpler, clearer.

14

Know your audience
 Code and specs have a target audience:

the programmers who will maintain, use it
 Should be written with

 Enough documented detail so they can understand it
 while avoiding spelling out the obvious

15

Consistency
A foolish consistency is the hobgoblin of little

minds -- Emerson
 Pick a consistent coding style, stick with it

 Make your code understandable by “little minds”

 Teams should set common style

 Match style when editing someone
else’s code

16

Copying code spreads bugs
 Biggest single source of program errors:

copying code
 Bug fixes never reach all the copies
 Think thrice before using your editor’s copy-and-

paste function

 Abstract instead of copying!
 Write many calls to a single function rather than

copying the same block of code around

^V

17

Premature optimization
 What people do for speed:

 Copy code to avoid overhead of abstraction
mechanisms

 Write more complex, longer code
 Violate abstraction barriers

 Result: not simple or clear
 Performance gains often negligible

 Avoid trying to accelerate performance until you
 Have the program designed and working
 Know that simplicity needs to be sacrificed
 Know where simplicity needs to be sacrificed

18

Design vs. programming by example

 Programming by example:
 Copy (!) code that does something like what you want,

hack it until it works

 Problems:
 inherit bugs in code
 don’t understand code fully
 usually inherit unwanted functionality
 code is a bolted-together hodge-podge

 Alternative: design
 Understand exactly why your code works
 Reuse abstractions not code templates

