

Overview

- Recursion
- a programming strategy that solves a problem by reducing it to simpler or smaller instance(s) of the same problem
- Induction
- a mathematical strategy for proving statements about natural numbers $0,1,2, \ldots$ (or more generally, about inductively defined objects)
- Induction and recursion are very closely related

Announcements

- There have been some corrections to A1
- Check the website and the newsgroup
- Upcoming topic:

Recursion
Lecture 3
CS 211 - Fall 2005

Defining Functions

- It is often useful to write a given function in different ways
- Let $S:$ int \rightarrow int be the function where $S(n)$ is the sum of the integers from 0 to n . E.g.,

$$
S(0)=0 \quad S(3)=0+1+2+3=6
$$

- Definition: iterative form
- $\mathrm{S}(\mathrm{n})=0+1+\ldots+\mathrm{n}$
- Another characterization: closed form
- $\mathrm{S}(\mathrm{n})=\mathrm{n}(\mathrm{n}+1) / 2$

Sum of Squares

- Here is a more complex example.
- Let SQ : int \rightarrow int be the function that gives the sum of the squares of integers from 0 to n . E.g.,

$$
\mathrm{SQ}(0)=0 \quad \mathrm{SQ}(3)=0^{2}+1^{2}+2^{2}+3^{2}=14
$$

- Definition: $\mathrm{SQ}(\mathrm{n})=0^{2}+1^{2}+\ldots+\mathrm{n}^{2}$
- Is there an equivalent closed-form expression?

Closed-form expression for SQ(n)

- Sum of integers between 0 through n was $n(n+1) / 2$ which is a quadratic in n .
- Inspired guess: perhaps sum of squares of integers between 0 through n is a cubic in n .
- So conjecture: $\mathrm{SQ}(\mathrm{n})=\mathrm{an}^{3}+\mathrm{bn}^{2}+\mathrm{cn}+\mathrm{d}$ where a,b,c,d are unknown coefficients.
- How can we find the values of the four unknowns?
- Use any 4 values of n to generate 4 linear equations, and solve

Finding coefficients

$\mathrm{SQ}(\mathrm{n})=0^{2}+1^{2}+\ldots+\mathrm{n}^{2}=\mathrm{an}^{3}+\mathrm{bn}^{2}+\mathrm{cn}+\mathrm{d}$

- Use $\mathrm{n}=0,1,2,3$
- $\mathrm{SQ}(0)=0=\mathrm{a} \cdot 0+\mathrm{b} \cdot 0+\mathrm{c} \cdot 0+\mathrm{d}$
- $\mathrm{SQ}(1)=1=\mathrm{a} \cdot 1+\mathrm{b} \cdot 1+\mathrm{c} \cdot 1+\mathrm{d}$
- $\mathrm{SQ}(2)=5=\mathrm{a} \cdot 8+\mathrm{b} \cdot 4+\mathrm{c} \cdot 2+\mathrm{d}$
- $\mathrm{SQ}(3)=14=\mathrm{a} \cdot 27+\mathrm{b} \cdot 9+\mathrm{c} \cdot 3+\mathrm{d}$
- Solve these 4 equations to get $\mathrm{a}=1 / 3, \mathrm{~b}=1 / 2, \mathrm{c}=1 / 6, \mathrm{~d}=0$
- This suggests

$$
\begin{aligned}
\operatorname{SQ}(\mathrm{n}) & \equiv 0^{2}+1^{2}+\ldots+\mathrm{n}^{2} \\
& =\mathrm{n}^{3} / 3+\mathrm{n}^{2} / 2+\mathrm{n} / 6 \\
& =\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1) / 6
\end{aligned}
$$

- Question: How do we know this closed-form solution is true for all values of n ?
- Remember, we only used $n=0,1,2,3$ to determine these coefficients. We do not know that the closed-form expression is valid for other values of n .
- One approach:
- Try a few other values of n to see if they work.
- Try $\mathrm{n}=5$: $\quad \mathrm{SQ}(\mathrm{n})=0+1+4+9+16+25=55$
- Closed-form expression: 5•6•11/6 $=55$
- Works!
- Try some more values...
- Problem: we can never prove validity of closedform solution for all values of n this way since there are an infinite number of values of n.

To solve this problem, let us express $\mathrm{SQ}(\mathrm{n})$ in another way.

$$
\operatorname{SQ}(\mathrm{n})=\frac{0^{2}+1^{2}+\ldots+(\mathrm{n}-1)^{2}+\mathrm{n}^{2}}{\operatorname{SQ}(\mathrm{n}-1)}
$$

This leads to the following recursive definition of SQ:

$$
\begin{aligned}
& \mathrm{SQ}(0)=0 \\
& \mathrm{SQ}(\mathrm{n})=\mathrm{SQ}(\mathrm{n}-1)+\mathrm{n}^{2}, \quad \mathrm{n}>0
\end{aligned}
$$

To get a feel for this definition, let us look at

$$
\mathrm{SQ}(4)=\mathrm{SQ}(3)+4^{2}=\mathrm{SQ}(2)+3^{2}+4^{2}=\mathrm{SQ}(1)+2^{2}+3^{2}+4^{2}
$$

$$
=\mathrm{SQ}(0)+1^{2}+2^{2}+3^{2}+4^{2}=0+1^{2}+2^{2}+3^{2}+4^{2}
$$

Notation for recursive functions

Can we show that these two functions are equal?

- Assume equally spaced dominoes, and assume that spacing between dominoes is less than domino length.
- How would you argue that all dominoes would fall?
- Dumb argument:
- Domino 0 falls because we push it over.
- Domino 0 hits domino 1, therefore domino 1 falls.
- Domino 1 hits domino 2, therefore domino 2 falls.
- Domino 2 hits domino 3, therefore domino 3 falls.
- Is there a more compact argument we can make?

$$
\begin{aligned}
& \mathrm{SQ}_{\mathrm{r}}(0)=0 \\
& \mathrm{SQ}_{\mathrm{r}}(\mathrm{n})=\mathrm{SQ}_{\mathrm{r}}(\mathrm{n}-1)+\mathrm{n}^{2}, \mathrm{n}>0
\end{aligned}
$$

Let $\mathrm{P}(\mathrm{n})$ be the proposition that $\mathrm{SQ}_{\mathrm{r}}(\mathrm{n})=\mathrm{SQ}_{\mathrm{c}}(\mathrm{n})$.
Proof by induction:

$$
\begin{aligned}
& \mathrm{P}(0): \mathrm{SQ}_{\mathrm{r}}(0)=0=\mathrm{SQ}_{\mathrm{c}}(0) \\
& P(k) \Rightarrow P(k+1) \text { : Assume } S Q_{r}(k)=S Q_{c}(k) \text {, prove that } \mathrm{SQ}_{\mathrm{r}}(\mathrm{k}+1)=\mathrm{SQ}_{\mathrm{c}}(\mathrm{k}+1) \\
& \begin{aligned}
\mathrm{SQ}_{\mathrm{r}}(\mathrm{k}+1) & =\mathrm{SQ}_{\mathrm{r}}(\mathrm{k})+(\mathrm{k}+1)^{2} & & \\
& =\mathrm{SQ}_{\mathrm{c}}(\mathrm{k})+(\mathrm{k}+1)^{2} & & \text { (definition of } \left.\mathrm{SQ}_{\mathrm{r}}\right) \\
& =\mathrm{k}(\mathrm{k}+1)(2 \mathrm{k}+1) / 6+(\mathrm{k}+1)^{2} & & \text { (definition of } \left.\mathrm{SQ}_{\mathrm{c}}\right) \\
& =(\mathrm{k}+1)(\mathrm{k}+2)(2 \mathrm{k}+3) / 6 & & \text { (algebra) } \\
& =\mathrm{SQ}_{\mathrm{c}}(\mathrm{k}+1) & & \text { (definition of } \left.\mathrm{SQ}_{\mathrm{c}}\right)
\end{aligned}
\end{aligned}
$$

Therefore $\mathrm{SQ}_{\mathrm{r}}(\mathrm{n})=\mathrm{SQ}_{\mathrm{c}}(\mathrm{n})$ for all n .

Weak induction over integers

- We want to prove that some property $\mathrm{P}(\mathrm{n})$ holds for all integers $\mathrm{n} \geq 0$.
- Inductive argument:
- Base case $\mathrm{P}(0)$: Show that property P is true for 0 .
- Inductive step: $\mathrm{P}(\mathrm{k})$ implies $\mathrm{P}(\mathrm{k}+1)$: Assume that $\mathrm{P}(\mathrm{k})$ is true for an unspecified integer k (this is the inductive hypothesis). Under this assumption, show that $\mathrm{P}(\mathrm{k}+1)$ is true.
- Because we could have picked any k, we can conclude that $\mathrm{P}(\mathrm{n})$ holds for all integers $\mathrm{n} \geq 0$.

$$
\text { that } \mathrm{P}(\mathrm{n}) \text { holds for all integers } \mathrm{n} \geq 0 \text {. }
$$

Better argument

- Argument:
- Domino 0 falls because we push it over (base case).
- Assume that domino k falls over (inductive hypothesis).
- Because domino k's length is larger than inter-domino spacing, it will knock over domino $\mathrm{k}+1$ (inductive step).
- Because we could have picked any domino to be the k^{th} one, we conclude that all dominoes will fall over (conclusion).
- This is an inductive argument.
- This is called weak induction. There is also strong induction (later)
- Not only is it more compact, but it works for an infinite number of dominoes!

$$
\mathrm{SQ}_{\mathrm{r}}(\mathrm{n})=\mathrm{SQ}_{\mathrm{c}}(\mathrm{n}) \text { for all } \mathrm{n} ?
$$

Define $\mathrm{P}(\mathrm{n})$ as $\mathrm{SQ}_{\mathrm{r}}(\mathrm{n})=\mathrm{SQ}_{\mathrm{c}}(\mathrm{n})$

Prove $\mathrm{P}(0)$.
Assume $\mathrm{P}(\mathrm{k})$ for unspecified k , and
prove $\mathrm{P}(\mathrm{k}+1)$ under this assumption.

Another example

Prove that $0+1+\ldots+n=n(n+1) / 2$

- Basis $\mathrm{n}=0$:
- $0=0$
- Inductive step:
- Assume $1+2+\ldots+\mathrm{k}=\mathrm{k}(\mathrm{k}+1) / 2$ for an unspecified k . This is the inductive hypothesis.
- Under this assumption, show that $1+2+\ldots+(\mathrm{k}+1)=(\mathrm{k}+1)(\mathrm{k}+2) / 2$.
$-0+1+\ldots+\mathrm{k}+(\mathrm{k}+1)=(0+1+\ldots+\mathrm{k})+(\mathrm{k}+1)$
$=\mathrm{k}(\mathrm{k}+1) / 2+(\mathrm{k}+1)$
$=(\mathrm{k}+1)(\mathrm{k}+2) / 2$
- Therefore, if result is true for k, it is true for $k+1$.
- Conclusion: the result holds for all n.

- Sometimes we are interested in showing some proposition is true for integers $\geq b$
- Intuition: we knock over domino b, and dominoes in front get knocked over. Not interested in $0,1, \ldots,(b-1)$
- In general, base case in induction does not have to be 0 .
- If base case is some integer b, induction proves the proposition for $\mathrm{n}=\mathrm{b}, \mathrm{b}+1, \mathrm{~b}+2, \ldots$
- Does not say anything about $\mathrm{n}=0,1, \ldots, \mathrm{~b}-1$

Weak induction: nonzero base case

- Example: You can make any amount of postage above 8ϕ with some combination of 3ϕ and 5ϕ stamps.
- Basis: true for $8 ¢$: $8=3+5$
- Induction step: suppose true for k .
- If used a 5¢ stamp to make k, replace it by two 3 ¢ stamps. Get $\mathrm{k}+1$.
- If did not use a $5 ¢$ stamp to make k , must have used at least three 3ϕ stamps. Replace three 3ϕ stamps by two 5ϕ stamps. Get $\mathrm{k}+1$.

More on induction

- In some problems, it may be tricky to determine how to set up the induction:
- What are the dominoes?
- This is particularly true in geometric problems that can be attacked using induction.

Idea

- Consider boards of size $2^{\mathrm{n}} \times 2^{\mathrm{n}}$ for $\mathrm{n}=1,2, \ldots$
- Basis: show that tiling is possible for 2×2 board.
- Inductive step: assuming $2^{\mathrm{k}} \times 2^{\mathrm{k}}$ board can be tiled, show that $2^{k+1} \times 2^{k+1}$ board can be tiled.
- Conclude that any $2^{\mathrm{n}} \times 2^{\mathrm{n}}$ board can be tiled, $\mathrm{n}=$ $1,2, \ldots$
- Chessboard (8×8) is a special case of this argument. We have proved the 8×8 special case by solving a more general problem!

A Tiling Problem

- A chessboard has one square cut out of it. Can the remaining board be tiled using tiles of the shape shown in the picture (rotation allowed)?
- Not obvious that we can use induction!

- Divide the 4×4 board into four 2×2 sub-boards.
- One of the four sub-boards has the missing piece.
- By the induction hypothesis, that sub-board can be tiled since it is a 2×2 board with a missing piece.
- Tile the center squares of the three remaining sub-boards as shown.
- This leaves 32×2 boards with a missing piece, which can be tiled by the induction hypothesis.

When induction fails

- Sometimes an inductive proof strategy for some proposition may fail.
- This does not necessarily mean that the proposition is wrong.
- It may just mean that the inductive strategy you are trying fails.
- A different induction hypothesis (or a different proof strategy altogether) may succeed.

- Divide board into four sub-boards and tile the center squares of the three complete sub-boards.
- The remaining portions of the sub-boards can be tiled by the assumption about $2^{\mathrm{n}} \times 2^{\mathrm{n}}$ boards.

Tiling example (cont.)

- Let us try a different inductive strategy which will fail.
- Proposition: any $n \times n$ board with one missing square can be tiled.
- Problem: a 3×3 board with one missing square has 8 remaining squares, but our tile has 3 squares. Tiling is impossible.
- Therefore, any attempt to give an inductive proof of this proposition must fail.
- This does not say anything about the 8 x 8 case.

A Seemingly Similar Tiling Problem

- A chessboard has opposite corners cut out of it. Can the remaining board be tiled using tiles of the shape shown in the picture (rotation allowed)?
- Induction fails here. Why? (Well... for one thing, this board can't be tiled with dominos.)

Strong induction

- We want to prove that some property P holds for all n.
- Weak induction:
$-P(0)$: show that property P is true for 0
$-P(k) \Rightarrow P(k+1)$: show that if property P is true for k, it is true for $\mathrm{k}+1$
- Conclude that $\mathrm{P}(\mathrm{n})$ holds for all n .
- Strong induction:
$-P(0)$: show that property P is true for 0
$-P(0)$ and $P(1)$ and \ldots and $P(k)=>P(k+1)$: show that if P is true for numbers less than or equal to k, it is true for $\mathrm{k}+1$
- Conclude that $\mathrm{P}(\mathrm{n})$ holds for all n .
- Both proof techniques are equally powerful.

Conclusion

- Induction is a powerful proof technique
- Recursion is a powerful programming technique
- Induction and recursion are closely related. We can use induction to prove correctness and complexity results about recursive programs. Examples next time!

