
1

Recursion

Lecture 4
CS211 – Fall 2005

Announcements
• Assignment 2 is online 

(since Friday)
Due date: Wednesday, 
September 14
Recommendation: Start 
now

• If you would like a partner 
for A2

Sign up sheet
Name and netID

• Be sure to “form your 
group” on CMS!

It does not happen 
automatically

• For extra Java help
Lots of consulting/office-
hours are available

• General Java-help is more 
easily available in week 
before assignment is due

Can set up individual 
meetings with TAs via 
email

Recursion
• Recursion is a powerful technique for specifying functions, 

sets, and programs
• Recursively-defined functions and programs

factorial 
combinations
differentiation of polynomials

• Recursively-defined sets
grammars 
expressions
data structures (lists, trees, ...)

The Factorial Function  (n!)
• Define n! = n·(n−1)·(n−2)···3·2·1     read: “n factorial”
• E.g., 3! = 3·2·1 = 6
• By convention, 0! = 1
• The function int → int that gives n! on input n is called the factorial 

function.
• n! is the number of permutations of n distinct objects

There is just one permutation of one object.  1! = 1
There are two permutations of two objects:  2! = 2

1 2    2 1
There are six permutations of three objects:  3! = 6

1 2 3     1 3 2     2 1 3     2 3 1     3 1 2     3 2 1
• If n > 0,  n! = n·(n − 1)!

Permutations of
Permutations of 
non-pink blocks

Each permutation of the three non-pink 
blocks gives four permutations of the four 
blocks.

Total number = 4·6 = 24 = 4!

A Recursive Program

static int fact(int n) {
if (n = = 0) return 1;
else return n*fact(n-1);

}

0! = 1

n! = n·(n−1)!,  n > 0

1

1

2

6

Execution of fact(4)

fact(1)

fact(4)

fact(3)

fact(0)

fact(2)

24



2

General Approach to Writing 
Recursive Functions

1. Try to find a parameter, say n, such that the solution for 
n can be obtained by combining solutions to the same
problem with smaller values of n (e.g., chess-board 
tiling, factorial)

2. Figure out the base case(s) — small values of n for 
which you can just write down the solution (e.g., 0! = 1)

3. Verify that for any value of n of interest, applying the 
reduction of step 1 repeatedly will ultimately hit one of 
the base cases    

The Fibonacci Function
• Mathematical definition:

fib(0) = 0
fib(1) = 1
fib(n) = fib(n − 1) + fib(n − 2),  n ≥ 2

• Fibonacci sequence:  0, 1, 1, 2, 3, 5, 8, 13, …

two base cases!

static int fib(int n) {
if (n = = 0) return 0;
else if (n = = 1) return 1;
else return fib(n-1) + fib(n-2);

} 

Fibonacci
(Leonardo Pisano,
1170−1240?)

Statue in Pisa, Italy
Giovanni Paganucci,
1863

Recursive Execution
static int fib(int n) {

if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

} 

fib(4)

fib(3) fib(2)

fib(1) fib(0)

fib(2) fib(1) fib(1) fib(0)

Execution of fib(4):

= number of 2-element subsets of  S  = {A,B,C,D,E}

• 2-element subsets containing A: 
{A,B}, {A,C}, {A,D},{A,E}

• 2-element subsets not containing A: 
{B,C},{B,D},{B,E},{C,D},{C,E},{D,E}

Therefore,           =          +  

Combinations 
(a.k.a. Binomial Coefficients)

How many ways can you choose r items from 

a set S of n distinct elements?    ( ) “n choose r”n
r

(  )4
1

(  )4
2

(  )4
1 (  )4

2(  )5
2

( )5
2

Combinations

• You can also show that            =  

= +         ,  n > r > 0

= 1
= 1

(  )n
r (    )n−1

r (    )n−1
r−1

(  )n
n

(  )n
0

(  )n
r

n!
r!(n−r)!



3

Combinations
= +         ,  n > r > 0

= 1
= 1

(  )n
r (    )n−1

r (    )n−1
r−1

(  )n
n

(  )n
0

(  )0
0

(  )1
1(  )1

0

(  )2
2(  )2

1(  )2
0

(  )3
3(  )3

2(  )3
1(  )3

0

(  )4
4(  )4

3(  )4
2(  )4

1(  )4
0

1
1     1

1     2     1
1     3     3     1

1     4     6     4     1
1     5    10     10    5     1

=

Pascal’s
triangle

These are also called binomial coefficients because they 
appear as coefficients in the expansion of the binomial 
power (x + y)n:

(x + y)n =        xn +       xn−1y +       xn−2y2 + ··· +        yn

=  Σ xn−iyi(  )n
i

(  )n
n(  )n

0 (  )n
1 (  )n

2

n

i = 0

Combinations

Combinations have two base cases

• Coming up with right base cases can be tricky!
• General idea:

Determine argument values for which recursive case does not apply
Introduce a base case for each one of these

• Rule of thumb: (not always valid) if you have r recursive calls on right 
hand side, you may need r base cases.

Two base cases

= +         ,  n > r > 0

= 1
= 1

(  )n
r (    )n−1

r (    )n−1
r−1

(  )n
n

(  )n
0

Recursive Program for 
Combinations

static int combs(int n, int r){    //assume n>=r>=0
if (r == 0 || r == n) return 1; //base cases
else return combs(n-1,r) + combs(n-1,r-1);

}

= +         ,  n > r > 0

= 1
= 1

(  )n
r (    )n−1

r (    )n−1
r−1

(  )n
n

(  )n
0

Polynomial Differentiation 

Inductive cases:
d(uv)/dx    =  u dv/dx  +  v du/dx
d(u+v)/dx  = du/dx  +  dv/dx
Base cases:
dx/dx  = 1
dc/dx  = 0

d(3x)/dx  =  3dx/dx   + x d(3)/dx   = 3·1 + x·0  = 3

Example:

Positive Integer Powers
an = a·a·a···a (n times)

Alternative description:

a0 = 1
an+1 = a·an

static int power(int a, int n) {
if (n = = 0) return 1;
else return a*power(a,n-1);

}



4

A Smarter Version
• Power computation:

a0 = 1
If n is nonzero and even, an = (an/2)2

If n is odd, an = a·(an/2)2

• Java note: If x and y are integers, “x/y” returns the integer part of the quotient
• Example: 

a5 =  a·(a5/2)2 =  a·(a2)2 =  a·((a2/2)2)2   =  a·(a2)2

Note: this requires 3 multiplications rather than 5!

• What if n were higher? 
savings would be higher

• This is much faster than the straightforward computation
Straightforward computation:  n multiplications
Smarter computation:  log(n)  multiplications

Smarter Version in Java

• n = 0:  a0 = 1
• n nonzero and even:  an = (an/2)2

• n odd:  an = a·(an/2)2

static int power(int a, int n) {
if (n == 0) return 1;
int halfPower = power(a,n/2);
if (n%2 == 0) return halfPower*halfPower;
return halfPower*halfPower*a;

}

Implementation of Recursive Methods

static int power(int a, int n) {
if (n == 0) return 1;
int halfPower = power(a,n/2);
if (n%2 == 0) return halfPower*halfPower;
return halfPower*halfPower*a;

}

• The method has two parameters and a local variable
• Why aren’t these overwritten on recursive calls?

parameters
local variable • Key idea: 

Use a stack to remember parameters and local variables 
across recursive calls
Each method invocation gets its own stack frame

• A stack frame contains storage for
Local variables of method
Parameters of method
Return info (return address and return value)
Perhaps other bookkeeping info

Implementation of Recursive Methods

• Like a stack of plates
• You can push data on top or pop data 

off the top in a LIFO (last-in-first-out) 
fashion

• A queue is similar, except it is FIFO 
(first-in-first-out)

Stacks

top element
2nd element
3rd element

...

bottom element
...

top-of-stack
pointer

stack grows

• Stack() Creates an empty Stack
• boolean empty() Tests if the stack is empty
• E peek() Looks at the object at the top of the 

stack without removing it from the stack
• E pop() Removes the object at the top of the

stack and returns that object as the value
of the function

• push(E item) Pushes an item onto the top of the stack
• int search(E o) Returns the position of the given item

on the stack

java.lang.Stack



5

Stack Frame
• A new stack frame is 

pushed with each 
recursive call

• The stack frame is popped 
when the method returns

Leaving a return value (if 
there is one) on top of the 
Stack

a stack frame

return info

local variables

parameters

Example: power(2, 5)

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 2

(hP = ) ?

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 2

(hP = ) ?

return info

(a = ) 2
(n = ) 1

(hP = ) ?

return info

(a = ) 2
(n = ) 5
(hP = ) 4

return info

(a = ) 2
(n = ) 5
(hP = ) ?

return info

(a = ) 2
(n = ) 2
(hP = ) 2

return info

(a = ) 2
(n = ) 5
(hP = ) ?

return info

(a = ) 2
(n = ) 2
(hP = ) ?

return info

(a = ) 2
(n = ) 1
(hP = ) 1

(retval = ) 1

(retval = ) 2

(retval = ) 4

(retval = ) 32

How Do We Keep Track?
• At any point in execution, many invocations of 

power may be in existence
Many stack frames (all for power) may be in Stack
Thus there may be several different versions of the 
variables a and n

• How does processor know which location is 
relevant at a given point in the computation?

Answer: Frame Base Register
• Computational activity takes 

place only in the topmost (most 
recently pushed) stack frame

Special register called Frame 
Base Register (FBR) keeps 
track of where the topmost 
frame is

• Using the FBR
When a method is invoked, a 
frame is created for that 
method invocation, and FBR is 
set to point to that frame
When the invocation returns, 
FBR is restored to what it was 
before the invocation

• How does machine know what 
value to restore in FBR?

This is part of the return info in 
the stack frame

FBR

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 2

(hP = ) ?

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 2

(hP = ) ?

return info

(a = ) 2
(n = ) 1

(hP = ) ?

FBR FBR FBR

old FBR

old FBR

old FBR

old FBRold FBR old FBR

Conclusion

• Recursion is a convenient and powerful way to define 
functions

• Problems that seem insurmountable can often be solved in 
a “divide-and-conquer” fashion:

Reduce a big problem to smaller problems of the same kind, solve
the smaller problems
Recombine the solutions to smaller problems to form solution for
big problem

• Important application (next lecture): parsing of languages


