Recursion

• Recursion is a powerful technique for specifying functions, sets, and programs
• Recursively-defined functions and programs
 – factorial
 – combinations
 – differentiation of polynomials
• Recursively-defined sets
 – grammars
 – expressions
 – data structures (lists, trees, ...)

The Factorial Function (n!)

• Define n! = n(n−1)(n−2)...3·2·1 read: “n factorial”
• E.g., 3! = 3·2·1 = 6
• By convention, 0! = 1
• The function int → int that gives n! on input n is called the factorial function:
 • n! is the number of permutations of n distinct objects
 – There is just one permutation of one object. 1! = 1
 – There are two permutations of two objects: 2! = 2
 • 1 2 2 1
 – There are six permutations of three objects: 3! = 6
 • 1 2 3 1 2 3 2 1 3 1 2 3
 • If n > 1, n! = n(n−1)!

A Recursive Program

0! = 1
n! = n(n−1)!, n > 0

```
static int fact(int n) {
    if (n == 0) return 1;
    else return n*fact(n-1);
}
```

Execution of fact(4)

```
\[
\begin{align*}
\text{fact(4)} & \rightarrow 24 \\
\text{fact(3)} & \rightarrow 6 \\
\text{fact(2)} & \rightarrow 2 \\
\text{fact(1)} & \rightarrow 1 \\
\text{fact(0)} & \rightarrow 1
\end{align*}
\]
```

General Approach to Writing Recursive Functions

1. Try to find a parameter, say n, such that the solution for n can be obtained by combining solutions to the same problem with smaller values of n (e.g., chess-board tiling, factorial)
2. Figure out the base case(s) -- small values of n for which you can just write down the solution (e.g., 0! = 1)
3. Verify that for any value of n of interest, applying the reduction of step 1 repeatedly will ultimately hit one of the base cases
The Fibonacci Function

- Mathematical definition:
 \[\text{fib}(0) = 1 \]
 \[\text{fib}(1) = 1 \]
 \[\text{fib}(n) = \text{fib}(n-1) + \text{fib}(n-2), \quad n \geq 2 \]
- Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, …

```
static int fib(int n) {
    if (n == 0) return 1;
    else if (n == 1) return 1;
    else return fib(n-1) + fib(n-2);
}
```

Fibonacci
(Leonardo Pisano, 1170–1240?)

Statue in Pisa, Italy
Giovanni Paganucci, 1863

Recursive Execution

```
static int fib(int n) {
    if (n == 0) return 1;
    else if (n == 1) return 1;
    else return fib(n-1) + fib(n-2);
}
```

Execution of fib(4):

```
fib(4)
  ↘
fib(3)  fib(2)
    ↘
fib(2)  fib(1)  fib(1)  fib(0)
      ↘
fib(1)  fib(0)
```

Combinations (a.k.a. Binomial Coefficients)

How many ways can you choose \(r \) items from a set \(S \) of \(n \) distinct elements? \[^n\choose r\] “\(n \) choose \(r \)”

\[^5\choose 2\] = number of 2-element subsets of \(S = \{A,B,C,D,E\} \)

- subsets containing A: \(\{A,B\}, \{A,C\}, \{A,D\}, \{A,E\} \) \[^1\choose 1\]
- subsets not containing A:
 \(\{B,C\}, \{B,D\}, \{B,E\}, \{C,D\}, \{C,E\}, \{D,E\} \) \[^4\choose 2\]

Therefore, \[^2\choose 2\] = \[^1\choose 1\] + \[^4\choose 2\]

Combinations

\[^n\choose r\] = \(\frac{n!}{r!(n-r)!}\), \(n > r > 0\)

\[^n\choose n\] = 1

\[^n\choose 0\] = 1

- You can also show that \[^n\choose r\] = \(\frac{n!}{r!(n-r)!}\)

Combinations

\[^n\choose r\] = \(\frac{n!}{r!(n-r)!}\), \(n > r > 0\)

\[^n\choose n\] = 1

\[^n\choose 0\] = 1

```
\begin{array}{cccc}
\binom{0}{0} & \binom{0}{1} & \binom{1}{0} & \binom{1}{1} \\
1 & 1 & 1 & 1 \\
\binom{n}{0} & \binom{n}{1} & \binom{n}{2} & \binom{n}{3} & \binom{n}{4} \\
1 & 1 & 1 & 1 & 1 \\
\end{array}
```

Pascal’s triangle

\[
\begin{array}{cccccc}
& & & 1 & & \\
& & 1 & & 1 & \\
& 1 & & 2 & & 1 \\
1 & & 3 & & 3 & & 1 \\
1 & & 4 & & 6 & & 4 & & 1 \\
1 & & 5 & & 10 & & 10 & & 5 & & 1 \\
\end{array}
\]
Combinations

These are also called binomial coefficients because they appear as coefficients in the expansion of the binomial power \((x + y)^n\):

\[
(x + y)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^2 + \cdots + \binom{n}{n}y^n
\]

\[
= \sum_{i=0}^{n} \binom{n}{i} x^{n-i} y^i
\]

Combinations have two base cases

\[
\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}, \quad n > r > 0
\]

\[
\binom{n}{0} = 1, \quad \binom{n}{n} = 1
\]

Recursive Program for
Combinations

\[
\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}, \quad n > r > 0
\]

\[
\binom{n}{0} = 1
\]

\[
\binom{n}{n} = 1
\]

```java
static int combs(int n, int r){    //assume n>=r>=0
    if (r == 0 || r == n) return 1; //base cases
    else return combs(n-1,r) + combs(n-1,r-1);
}
```

Polynomial Differentiation

Inductive cases:

\[
d(uv)/dx = u dv/dx + v du/dx
\]

\[
d(u+v)/dx = du/dx + dv/dx
\]

Base cases:

\[
dx/dx = 1
\]

\[
dc/dx = 0
\]

Example:

\[
d(3x)/dx = 3dx/dx + x d(3)/dx = 3 \cdot 1 + x \cdot 0 = 3
\]

Positive Integer Powers

\[a^n = a \cdot a \cdot a \cdots a \text{ (n times)}\]

Alternative description:

\[a^0 = 1\]

\[a^{n+1} = a \cdot a^n\]

```java
static int power(int a, int n) {
    if (n == 0) return 1;
    else return a*power(a,n-1);
}
```

A Smarter Version

- Power computation:
 - \[a^1 = 1\]
 - If \(a\) is nonzero and even, \[a^n = (a^{n/2})^2\]
 - If \(a\) is odd, \[a^n = a \cdot (a^{n/2})^2\]
- Java note: If \(x\) and \(y\) are integers, \("x/y"\) returns the integer part of the quotient
- Example:
 - \[a^5 = a \cdot (a^2)^2 = a \cdot ((a^2)/2)^2\]
 - \[a^5 = a \cdot (a^2)^2\]
 - Note: this requires 3 multiplications rather than 5!
- What if \(n\) were higher?
 - Savings would be higher
- This is much faster than the straightforward computation
 - Straightforward computation: \(n\) multiplications
 - Smarter computation: \(\log(n)\) multiplications
Smarter Version in Java

- \(n = 0 \): \(a^0 = 1 \)
- \(n \) nonzero and even: \(a^n = (a^{n/2})^2 \)
- \(n \) odd: \(a^n = a \cdot (a^{n/2})^2 \)

```java
static int power(int a, int n) {
    if (n == 0) return 1;
    int halfPower = power(a, n/2);
    if (n%2 == 0) return halfPower*halfPower;
    return halfPower*halfPower*a;
}
```

Implementation of Recursive Methods

- Key idea:
 - use a stack to remember parameters and local variables across recursive calls
 - each method invocation gets its own stack frame
- A stack frame contains storage for
 - parameters of method
 - local variables of method
 - return address
 - perhaps other bookkeeping info

```
    stack grows
      top element
      2nd element
      3rd element
      ...
      ...
      bottom element
```

Stacks

- Like a stack of plates
- You can push data on top or pop data off the top in a LIFO (last-in-first-out) fashion
- A queue is similar, except it is FIFO (first-in-first-out)

java.lang.Stack

- Stack()
- boolean empty()
- E peek()
- E pop()
- E push(E item)
- int search(E o)

Stack Frames

- A new stack frame is pushed with each recursive call
- The stack frame is popped when the method returns
Conclusion

• Recursion is a convenient and powerful way to define functions
• Problems that seem insurmountable can often be solved in a “divide-and-conquer” fashion:
 – Reduce a big problem to smaller problems of the same kind, solve the smaller problems
 – Recombine the solutions to smaller problems to form solution for big problem
• Important application (next lecture): parsing of languages