Machine Learning
Learning From Data with Decision Trees

Supervised (Function) Learning
• \(y = F(x_1 \ldots x_n) \): true function (usually not known)
• \(D \): training sample drawn from \(F(x) \)

Big Picture: Supervised Learning

Train Set:

<table>
<thead>
<tr>
<th></th>
<th>57, M, 195, 0, 125, 95, 39, 25, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>78, M, 160, 1, 130, 100, 37, 40, 1, 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>69, F, 180, 0, 115, 85, 40, 22, 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>54, F, 135, 0, 115, 95, 39, 35, 1, 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>64, F, 210, 1, 135, 105, 39, 24, 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>89, F, 135, 0, 120, 95, 36, 28, 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>49, M, 195, 0, 115, 85, 39, 32, 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>40, M, 205, 1, 135, 105, 39, 24, 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>74, M, 250, 1, 130, 100, 38, 26, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>77, F, 140, 0, 125, 100, 40, 30, 1, 0</td>
<td>0</td>
</tr>
</tbody>
</table>

Test Set:

| | 71, M, 160, 1, 130, 105, 38, 20, 1, 0 | ? |

bad news …
Big Picture: Supervised Learning

- **F(x):** true function (usually not known)
- **D:** training sample drawn from F(x)

 87,M,199,0.125,93,25,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
 78,M,166,1,136,1,100,37,40,1,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 89,F,180,0,115,1,54,46,22,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 18,M,165,0,116,0,41,30,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 54,F,138,0,115,95,35,1,0

- **G(x):** model learned from training sample D

 73,M,166,1,136,1,100,37,40,1,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

- **Goal:** $E[(F(x)-G(x))^2]$ is small (near zero) for future test samples drawn from F(x)
- Think of supervised learning as super regression

What Data Structure(s) for Data?

- **2-D array**
 - T training cases
 - N attributes per case
- **List of vectors**
 - N attributes per vector
- **Attributes of different types:**
 - **Boolean:** 0/1
 - **Nominal:** chevrolet, chrysler, ford, subaru, toyota, volvo, …
 - **Integer:** 0, 1, 2, 3, …
 - **Ordinal:** low, medium, high
 - **Continuous:** [0, 1], [0, 100], [-1000, 1000], …
- In languages like C, sometimes coded as floats/int (with hash tables to look up values). JAVA is better for this.

Decision Trees

(Neural Nets, Support Vector Machines, …)

A Simple Decision Tree for **Slope Day**

```
          Outlook
            /    \
          sunny  overcast
            /      \
        Yes      Yes
         /        /  \
    humidity  wind  \\
        High  Yes   Strong  Yes
            /      \
        No     Weak
```

A Decision Tree is Represented as a Tree

- An internal node = attribute test
- A branch = attribute value
- A leaf node = classification

A Real Decision Tree

- Binary attributes
- N-ary attributes

What about continuous attributes such as height, weight, blood pressure, temperature?
A Real (but very small) Decision Tree

Decision Tree Trained on 1000 Patients:

- fetal_presentation = 1: +822+116 (tree) 0.8759 0.1241 0
- | previous_csection = 0: +767+81 (tree) 0.8432 0.1568 0
- | | primiparous = 0: +399+13 (tree) 0.9673 0.03269 0
- | | primiparous = 1: +368+68 (tree) 0.8342 0.1673 0
- | | | fetal_distress = 0: +334+47 (tree) 0.8757 0.1243 0
- | | | birth_weight < 3349: +201+10.555 (tree) 0.9482 0.05176 0
- | | | birth_weight >= 3349: +133+36.445 (tree) 0.783 0.217 0
- | | | fetal_distress = 1: +34+21 (tree) 0.6161 0.3839 0
- | | previous_csection = 1: +55+35 (tree) 0.6099 0.3901 0
- fetal_presentation = 2: +3+29 (tree) 0.1061 0.8939 1
- fetal_presentation = 3: +8+22 (tree) 0.2742 0.7258 1

What Data Structures(s) for DTREE?

- Not binary tree
- N-ary tree
 - Left child and Right siblings
 - List of child nodes
- Info at each node:
 - Number of cases of each class
 - List pointing to cases at that node?
 - Array for cases at that node
 - Attribute tested at node
 - Node’s prediction

Computational Complexity?

- N attributes
- T training cases
- How expensive is it to “grow” a tree?

Generate & Test All Trees to Find Best

- all possible sequences of all possible tests
- very large search space, e.g., if N binary attributes:
 - 1 null tree
 - N trees with 1 (root) test
 - N*(N-1) trees with 2 tests
 - N*(N-1)*(N-1) trees with 3 tests (if balanced)
 - O(N^4) trees with 4 tests
 - maximum height of tree is N
 - O(N^N)????
Real Data, Real People, Real Trees:
C-Section Prediction

Demo summary:
• Fast
• Reasonably intelligible
• Larger training sample => larger tree
• Different training sample => different tree

collaboration with Magee Hospital, Siemens Research, Tom Mitchell

Recursive Induction of Decision Trees

• TDIDT (Top-Down Induction of Decision Trees)
• Greedy Tree Growing
• Recursive Partitioning
 • find “best” attribute text to install at root
 • split data on root test
 • find “best” attribute test to install at each new node
 • split data on new test
 • repeat until:
 • all nodes are pure
 • all nodes contain fewer than k cases
 • distributions at nodes indistinguishable from chance
 • tree reaches predetermined max depth
 • no more attributes to test

Recursive Partitioning PseudoCode

```java
public static boolean split ( dataList d, attributeList a ) {
    if ( d == null ||
        a == null ||
        countPos(d) == 0 ||
        countNeg(d) == 0 )
        return false;
    else {
        float bestPerf = 0; attribute bestAttr = null;
        for ( attribute attr = a; attr != null; attr = attr.getNext() )
            if ( a.perf(d) > bestPerf )
                { bestPerf = a.perf(d); bestAttr = a; }
        if ( bestAttr != null )
            { split ( left ( d, bestAttr), remove(a, bestAttr));
                split ( right(d, bestAttr), remove(a, bestAttr));
                return true;
            } else return false;
    }
```

Complexity of Recursive Partitioning?

• N attributes (usually N < 1000)
• T training cases (typically 100 < T < 1,000,000)

• Best Case: ~ O(N^2), O(TlogT)
• Worst Case: ~ O(N^2), O(T^2)

• With clever data structures, can reduce to O(TlogT)
Splitting Rules

- Information Gain = reduction in entropy due to splitting on an attribute
- Entropy = expected number of bits needed to encode the class of a randomly drawn + or – example using the optimal info-theory coding

\[
Entropy = \sum p_i \log_2 p_i - \sum \frac{|S_v|}{|S|} \log_2 \frac{|S_v|}{|S|}
\]

\[
Gain(S, A) = Entropy(S) - \frac{1}{|\text{Values}(A)|} \sum \frac{|S_v|}{|S|} \log_2 \frac{|S_v|}{|S|}
\]

Greedy vs. Optimal

- Optimal
 - Maximum expected accuracy (test set)
 - Minimum size tree
 - Minimum depth tree
 - Fewest attributes tested
 - Easiest to understand

- XOR problem!

Attribute Types

- Boolean
- Nominal
- Ordinal
- Integer
- Continuous
 - Sort by value, then find best threshold for binary split
 - Cluster into n intervals and do n-way split
Decision Trees are Intelligible

Not *ALL* Decision Trees Are Intelligible

Part of Best Performing C-Section Decision Tree

Overfitting

Bagged Decision Trees

- Draw 100 bootstrap samples of data
- Train trees on each sample -> 100 trees
- Average prediction of trees on out-of-bag samples
Bagging Results

Summary of Decision Tree Learning

- Arrays
- Lists
- Trees
- Computational complexity (big-O)
- Recursion
- Hash tables
- Advantages of JAVA over C
 - Arrays/lists of different types: boolean, nominal, ordinal, integer, continuous

Computer Science

- CS is not programming
 - most machine learning textbooks don’t include code or discuss programming or data structures. sometimes discuss algorithms
 - what math is to engineering, programming is to computer science
 - many computer scientists feel that they don’t get to do enough programming
- In 20 years, we’ll have as much raw computational power as a human brain in a single computer
- Build “things” millions of people will use
- CS is the driving force behind the internet, the largest social change in 100 years (since the telephone)

Computer Science

- CS is many things: system design, database design, understanding user needs, human factors engineering, information retrieval, …
- Computers change everything they touch
- CS is becoming critical to every field of human endeavor
 - NASA, space travel, Hubble space telescope, …
 - Genomics and Bioinformatics
 - Medicine
 - Meteorology
 - Engineering: mechanical, electrical, civil, aeronautical…
 - Libraries
 - Games and Entertainment
 - Arts
 - …
THE END

Thank You!
Good Luck in your finals
Have a good summer.