
1

Some Unresolved 
Questions

Lecture 26
CS211 – Fall 2005

Announcements
• Final Exam

Wednesday, 12/14
9:00-11:30am 
Uris Aud 

• Review Session
Sunday, 12/11 
1:00-2:30pm
Kimball B11 

• Check your final exam 
schedule!

• For exam conflicts:
Notify Kelly Patwell
(patwell@cs.cornell.edu)
You must provide

• your entire exam schedule
• include the course numbers

• Definition of exam conflict:
Two exams at the same time 
or
Three or more exams within 
24 hours

Complexity of Bounded-Degree Euclidean MST?

• The Euclidean MST 
(Minimum Spanning Tree) 
problem: 

Given n points in the plane, 
determine the MST
Can be solved in O(n log n) 
time by first building the 
Delaunay Triangulation

• Bounded-degree version:
Given n points in the plane 
determine the MST where 
each vertex has degree ≤ k

• Known to be NP-hard for 
k=3 [Papadimitriou & 
Vazirani 84]

• O(n log n) algorithm for 
k=5 (or greater)

Can show Euclidean 
MST has degree ≤ 5

• Unknown for k=4

Runtime for Euclidean MST in Rd?
• Given n points in 

dimension d, determine the 
MST

Is there an algorithm with 
runtime close to the 
Ω(n log n) lower bound?

• Can solve in time 
O(n log n) for d=2

• For large d, it appears that 
runtime approaches O(n2)

• Best algorithms for general 
graphs run in time linear in 
m = number of edges

But for Euclidean distances 
on points, the number of 
edges is n(n-1)/2

O(n2) Time for X+Y Sorting?
How long does it take to a sort an 

n-by-n table of numbers?

• O(n2log n) because there are n2

numbers in the table

• What if it’s an addition table?
Shouldn’t it be easier to sort 
than an arbitrary set of n2

numbers?

• There is a technique [Fredman 
76] that uses just O(n2) 
comparisons

But it uses O(n2log n) time 
[Lambert 92] to decide which
comparisons to use

• This problem is closely related to 
the problem of sorting the 
vertices of a line arrangement

n-by-n

+ 1 3 5 8
2 3 5 7 10
10 11 13 15 18
12 13 15 18 20
14 15 17 19 22

O(n log n) Time for ShellSort?
• Is there a sequence of ShellSort step-sizes for 

which ShellSort runs in time O(n log n)?

• There is a sequence for which ShellSort runs in 
time O(n log2n)

• Pratt sequence: numbers of the form 2p3q arranged in order



2

3SUM in Subquadratic Time?
• Given a set of n integers, 

are there three that sum to 
zero?

O(n2) algorithms are easy 
(e.g., use a hashtable)
Are there better algorithms?

• This problem is closely 
related to many other 
problems [Gajentaan &
Overmars 95]

Given n lines in the plane, 
are there 3 lines that 
intersect in a point?
Given n triangles in the 
plane, does their union have 
a hole?

Great-Circle Graph 3-Colorable?
• Build a graph by drawing 

great-circles on a sphere
Create a vertex for each 
intersection
Assume no three great 
circles intersect in a point

• Is the resulting graph 3-
colorable?

• All arrangements for up to 
11 great circles have been 
verified as 3-colorable

• For general circles on the 
sphere (or for circles on the 
plane) the graph can 
require 4 colors

The Big Question: Is P=NP?
• P represents problems that can 

be solved in polynomial time
These problems are said to be 
tractable
Problems that are not in P are 
said to be intractable

• NP represents problems that, for 
a given solution, the solution can 
be checked in polynomial time

• For ease of comparison, 
problems are usually stated as 
yes-or-no questions

• Examples

Given a weighted graph G and 
a bound k, does G have a 
spanning tree of size ≤ k?

• This is in P because we have 
an algorithm for the MST 
with runtime O(m + n log n)

Given graph G, does G have a 
cycle that visits all vertices?

• This is in NP because, given a 
possible solution, we can 
check in polynomial time that 
it’s a cycle and that it visits 
all vertices

Current Status: P vs. NP
• It’s easy to show that 

P ⊆ NP
• Most researchers believe 

that P ≠ NP
But at present, there is no 
proof
We do have a large 
collection of NP-complete 
problems

• If any NP-complete 
problem has a polynomial 
time algorithm then they 
all do

• Definition: A problem B is 
NP-complete if, by making 
use of an imaginary fast 
subroutine for B, any 
problem in NP could be 
solved in polynomial time

[Cook 1971] showed a 
particular problem to be NP-
complete
[Karp 1972] showed that 
many useful problems are 
NP-complete

NP-Complete Problems
• Graph coloring: Given graph G 

and bound k, is G k-colorable?

• Planar 3-coloring: Given planar 
graph G, is G 3-colorable?

• Traveling Salesman: Given 
weighted graph G and bound k, 
is there a cycle of cost ≤ k that 
visits each vertex exactly once

• Hamiltonian Cycle: Give graph 
G, is there a cycle that visits each 
vertex exactly once?

• What if you really need an 
algorithm for an NP-complete 
problem?

Some special cases can be 
solved in polynomial time

• If you’re lucky, you have 
such a special case

Otherwise, once a problem is 
shown to be NP-complete, the 
best strategy is to start looking 
for an approximation

• For a while, a new proof 
showing a problem NP-complete 
was enough for a a paper

Nowadays, no one is interested 
unless the result is somehow 
unexpected


