

Complexity of Bounded-Degree Euclidean MST?

- The Euclidean MST (Minimum Spanning Tree) problem:
- Given n points in the plane, determine the MST
- Can be solved in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time by first building the Delaunay Triangulation

- Bounded-degree version:
- Given n points in the plane determine the MST where each vertex has degree $\leq \mathrm{k}$
- Known to be NP-hard for $\mathrm{k}=3$ [Papadimitriou \& Vazirani 84]
- $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ algorithm for $\mathrm{k}=5$ (or greater)
* Can show Euclidean

MST has degree ≤ 5

- Unknown for $\mathrm{k}=4$

Announcements

- Final Exam
- Wednesday, $12 / 14$
- 9:00-11:30am
- Uris Aud
- Review Session
- Sunday, 12/11
- 1:00-2:30pm
- Kimball B11
- Check your final exam schedule!
- For exam conflicts:
- Notify Kelly Patwell (patwell@cs.cornell.edu)
- You must provide
- your entire exam schedule
- include the course numbers
- Definition of exam conflict:
- Two exams at the same time or
- Three or more exams within 24 hours

Runtime for Euclidean MST in $\boldsymbol{R}^{\mathrm{d}}$?

- Given n points in dimension d, determine the MST
- Is there an algorithm with runtime close to the $\Omega(\mathrm{n} \log \mathrm{n})$ lower bound?
- Best algorithms for general graphs run in time linear in $\mathrm{m}=$ number of edges
- But for Euclidean distances on points, the number of edges is $\mathrm{n}(\mathrm{n}-1) / 2$
- Can solve in time
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$ for $\mathrm{d}=2$
- For large d, it appears that runtime approaches $\mathrm{O}\left(\mathrm{n}^{2}\right)$

$\mathrm{O}\left(\mathrm{n}^{2}\right)$ Time for $\mathrm{X}+\mathrm{Y}$ Sorting?

How long does it take to a sort an n-by-n table of numbers?
n n-by-n

- $O\left(n^{2} \log n\right)$ because there are n^{2} numbers in the table
- What if it's an addition table?
- Shouldn't it be easier to sort than an arbitrary set of n^{2} numbers?

+	1	3	5	8
2	3	5	7	10
10	11	13	15	18
12	13	15	18	20
14	15	17	19	22

- There is a technique [Fredman 76] that uses just $\mathrm{O}\left(\mathrm{n}^{2}\right)$ comparisons
- But it uses $\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$ time [Lambert 92] to decide which comparisons to use
- This problem is closely related to the problem of sorting the vertices of a line arrangement

$\mathrm{O}(\mathrm{n} \log \mathrm{n})$ Time for ShellSort?

- Is there a sequence of ShellSort step-sizes for which ShellSort runs in time $O(n \log n)$?
- There is a sequence for which ShellSort runs in time $\mathrm{O}\left(\mathrm{n} \log ^{2} \mathrm{n}\right)$
- Pratt sequence: numbers of the form $2^{\mathrm{p}} 3^{\mathrm{q}}$ arranged in order

3SUM in Subquadratic Time?

- Given a set of n integers, are there three that sum to zero?
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ algorithms are easy (e.g., use a hashtable)
- Are there better algorithms?

- This problem is closely related to many other problems [Gajentaan \& Overmars 95]
- Given n lines in the plane, are there 3 lines that intersect in a point?
- Given n triangles in the plane, does their union have a hole?

The Big Question: Is $\mathrm{P}=\mathrm{NP}$?

- P represents problems that can be solved in polynomial time
- These problems are said to be tractable
- Problems that are not in P are said to be intractable
- NP represents problems that, for a given solution, the solution can be checked in polynomial time
- For ease of comparison, problems are usually stated as yes-or-no questions
- Examples
- Given a weighted graph G and a bound k , does G have a spanning tree of size $\leq \mathrm{k}$?
- This is in P because we have an algorithm for the MST with runtime $O(m+n \log n)$
- Given graph G, does G have a cycle that visits all vertices?
- This is in NP because, given a possible solution, we can check in polynomial time that it's a cycle and that it visits all vertices

Current Status: P vs. NP

- It's easy to show that $\mathrm{P} \subseteq \mathrm{NP}$
- Most researchers believe that $\mathrm{P} \neq \mathrm{NP}$
- But at present, there is no proof
- We do have a large collection of NP-complete problems
- If any NP-complete problem has a polynomial time algorithm then they all do
- Definition: A problem B is NP-complete if, by making use of an imaginary fast subroutine for B , any problem in NP could be solved in polynomial time
- [Cook 1971] showed a particular problem to be NPcomplete
- [Karp 1972] showed that many useful problems are NP-complete

NP-Complete Problems

- Graph coloring: Given graph G and bound k , is Gk -colorable?
- Planar 3-coloring: Given planar graph G, is G 3-colorable?
- Traveling Salesman: Given weighted graph G and bound k , is there a cycle of cost $\leq k$ that visits each vertex exactly once
- Hamiltonian Cycle: Give graph G , is there a cycle that visits each vertex exactly once?
- What if you really need an algorithm for an NP-complete problem?
- Some special cases can be solved in polynomial time
- If you're lucky, you have such a special case
- Otherwise, once a problem is shown to be NP-complete, the best strategy is to start looking for an approximation
- For a while, a new proof showing a problem NP-complete was enough for a a paper
- Nowadays, no one is interested unless the result is somehow unexpected

Great-Circle Graph 3-Colorable?

- Build a graph by drawing great-circles on a sphere
- Create a vertex for each intersection
- Assume no three great circles intersect in a point
- Is the resulting graph 3colorable?
- All arrangements for up to 11 great circles have been verified as 3-colorable
- For general circles on the sphere (or for circles on the plane) the graph can require 4 colors

