
1

Java
Odds & Ends

Lecture 25
CS211 – Fall 2005

Announcements
• Final Exam

Wednesday, 12/14
9:00-11:30am 
Uris Aud 

• Review Session
Sunday, 12/11 
1:00-2:30pm
Kimball B11 

• Check your final exam 
schedule!

• For exam conflicts:
Notify Kelly Patwell
(patwell@cs.cornell.edu)
You must provide

• your entire exam schedule
• include the course numbers

• Definition of exam conflict:
Two exams at the same time 
or
Three or more exams within 
24 hours

GUI Drawing & Painting GUI Drawing & Painting
• For a drawing area:

Extend JPanel and override the method
public void paintComponent(Graphics g)

• paintComponent must contain the code to completely 
draw everything in your drawing panel

• Note that paintComponent is never called directly
It is requested via a call to repaint
Example: myDrawingPanel.repaint();

Java Graphics
• The Graphics class has methods for colors, fonts, and 

various shapes and lines
setColor (Color c)
drawOval (int x, int y, int width, int height)
fillOval (int x, int y, int width, int height)
drawLine (int x1, int y1, int x2, int y2)
drawString(String str, int x, int y)

• Take a look at
java.awt.Graphics (for basic graphics)
java.awt.Graphics2D (for “more sophisticated” control)
the 2D Graphics Trail 
(http://java.sun.com/docs/books/tutorial/2d/index.html)

Exceptions



2

Exceptions
• Exceptions are usually thrown to indicate that 

something bad has happened
IOException on failure to open or read a file
ClassCastException if attempted to cast an object to a 
type that is not a supertype of the dynamic type of the 
object
NullPointerException if tried to dereference null
ArrayIndexOutOfBoundsException if tried to access an 
array element at index i < 0 or ≥ the length of the array

Handling Exceptions
• Exceptions can be caught by the program using a 
try/catch block

•catch clauses are called exception handlers

Integer x = null;
try {

x = (Integer)y;
System.out.println(x.intValue());

} catch (ClassCastException e) {
System.out.println("y was not an Integer");

} catch (NullPointerException e) {
System.out.println("y was null");

}

Defining Your Own Exceptions

• An exception is an object (like everything else in Java)
You can define your own exceptions and throw them

class MyOwnException extends Exception {}

...

if (input == null) {
throw new MyOwnException();

}

The throws Clause
• In general, any exception you throw must be either declared

in the method header or caught

• Note: throws means “can throw”, not “does throw”
• Subtypes of RuntimeException do not have to be declared 

(e.g., NullPointerException, ClassCastException)
These represent exceptions that can occur during “normal operation 
of the Java Virtual Machine”

void foo(int input) throws MyOwnException {
if (input == null) {
throw new MyOwnException();

}
...

}

How Exceptions are Handled
• If the exception is thrown from inside a try/catch block with 

a handler for that exception (or a superclass of the 
exception), then that handler is executed

Otherwise, the method terminates abruptly and control is passed 
back to the calling method

• If the calling method can handle the exception (i.e., if the 
call occurred within a try/catch block with a handler for that 
exception) then that handler is executed

Otherwise, the calling method terminates abruptly, etc.

• If none of the calling methods handle the exception, the 
entire program terminates with an error message

Generic Types in Java 5.0



3

Generic Types in Java 5.0
• When using a collection (e.g., 

LinkedList, HashSet, HashMap), 
we generally have a single type 
T of elements that we store in it 
(e.g., Integer, String)

• Before 1.5, when extracting an 
element, had to cast it to T 
before we could invoke T's 
methods

• Compiler could not check that 
the cast was correct at compile-
time, since it didn't know what T 
was 

• Inconvenient and unsafe, could 
fail at runtime

• Generics in Java 1.5 provide a 
way to communicate T, the type 
of elements in a collection, to the 
compiler

• Compiler can check that you 
have used the collection 
consistently

• Result is safer and more-efficient 
code

Example

//removes 4-letter words from c
//elements must be Strings
static void purge(Collection c) {
Iterator i = c.iterator();
while (i.hasNext()) {
if (((String)i.next()).length() == 4)

i.remove();
}}

//removes 4-letter words from c
static void purge(Collection<String> c) {
Iterator<String> i = c.iterator();
while (i.hasNext()) {
if (i.next().length() == 4)

i.remove();
}}

ol
d

ne
w

Another Example

HashMap grades = new HashMap();
grades.put("John",new Integer(67));
grades.put("Jane",new Integer(88));
grades.put("Fred",new Integer(72));
Integer x = (Integer)grades.get("John");
System.out.println(x.intValue());

HashMap<String,Integer> grades =
new HashMap<String,Integer>();

grades.put("John",new Integer(67));
grades.put("Jane",new Integer(88));
grades.put("Fred",new Integer(72));
Integer x = grades.get("John");
System.out.println(x.intValue());

ol
d

ne
w

Type Casting
• In effect, Java inserts the correct cast automatically, based 

on the declared type

• In this example, grades.get("John") is automatically cast to 
Integer

HashMap<String,Integer> grades =
new HashMap<String,Integer>();

grades.put("John",new Integer(67));
grades.put("Jane",new Integer(88));
grades.put("Fred",new Integer(72));
Integer x = grades.get("John");
System.out.println(x.intValue());

An Aside: Autoboxing
• Java 5.0 also has autoboxing and auto-unboxing of 

primitive types, so the example can be further simplified

HashMap<String,Integer> grades =
new HashMap<String,Integer>();

grades.put("John",new Integer(67));
grades.put("Jane",new Integer(88));
grades.put("Fred",new Integer(72));
Integer x = grades.get("John");
System.out.println(x.intValue());

HashMap<String,Integer> grades =
new HashMap<String,Integer>();

grades.put("John", 67);
grades.put("Jane", 88);
grades.put("Fred", 72);
System.out.println(grades.get("John“));

Using Generic Types
• <T> is read, “of T”

For example: Stack<Integer> is read, “Stack of Integer”

• The type annotation <T> informs the compiler that 
all extractions from this collection should be 
automatically cast to T

• Specify type in declaration, can be checked at 
compile time – can eliminate explicit casts



4

Advantage of Generics
• Declaring Collection<String> c tells us something about 

the variable c (i.e., c holds only Strings)
This is true wherever c is used
The compiler checks this and won’t compile code that violates this

• Without use of generic types, explicit casting must be used
A cast tells us something the programmer thinks is true at a single 
point in the code
The Java virtual machine checks whether the programmer is right 
only at runtime

Subtypes

Stack<Integer> s = new Stack<Integer>();
s.push(new Integer(7));
Stack<Object> t = s; //gives compiler error
t.push("bad idea");
System.out.println(s.pop().intValue());

Stack<Integer> is not a subtype of Stack<Object>

Stack<Integer> s = new Stack<Integer>();
s.push(new Integer(7));
Stack t = s; //compiler allows this
t.push("bad idea");
System.out.println(s.pop().intValue());

However, Stack<Integer> is a subtype of Stack
(for backward compatibility with 1.4.2)

Programming Generic Types

public interface List<E> { //E is a type variable
void add(E x);
Iterator<E> iterator();

}

public interface Iterator<E> {
E next();
boolean hasNext();

}

• To use the generic type declaration List<E>, supply 
an actual type argument, e.g., List<Integer>

• All occurrences of the formal type parameter (E in this 
case) are replaced by the actual type argument 
(Integer in this case)

Wildcards

void printCollection(Collection c) {
Iterator i = c.iterator();
while (i.hasNext()) {
System.out.println(i.next());

}}

void printCollection(Collection<Object> c) {
for (Object e : c) {
System.out.println(e);

}}

ol
d

go
od

void printCollection(Collection<?> c) {
for (Object e : c) {
System.out.println(e);

}}

ba
d

Bounded Wildcards

• Note that if we declared the parameter c to be of type 
List<Comparable> then we could not sort an object of 
type List<String> (even though String is a subtype of 
Comparable)

Suppose Java treated List<String> as a subtype of 
List<Comparable>
Then, for instance, a method passed an object of type 
List<Comparable> would be able to store Integers in our 
List<String>

• Wildcards let us specify exactly what types are allowed

static void sort(List<? extends Comparable> c) {
...

}

Generic Methods

static void a2c(Object[] a, Collection<?> c) {
for (Object o : a) {
c.add(o); //compile time error

}}

static <T> void a2c(T[] a, Collection<T> c) {
for (T o : a) {
c.add(o); //ok

}}go
od

ba
d

Adding all elements of an array to a Collection



5

Some Generic Type Examples
class Simplex<V> extends AbstractSet<V> implements Set<V>

…
public Simplex (Collection<? extends V> collection)
…
public static <V> Set<Set<V>> boundary 

(Set<? extends Simplex<V>> simplexSet)

public class Triangulation<V> implements Iterable<Simplex<V>>
…
public Triangulation (Simplex<V> simplex)
…
public Iterator<Simplex<V>> iterator ()

For More Info on Generic Types
• See the online Java Tutorial for more information 

on generic types and generic methods
• The text also has a section (4.7) on this topic


