Announcements

Java « Final Exam * For exam conflicts:
= Wednesday, 12/14 = Notify Kelly Patwell
Odds & Ends = 9:00-11:30am (patwell@cs.cornell.edu)
= Uris Aud = You must provide

* your entire exam schedule
i . « include the course numbers
* Review Session

= Sunday, 12/11

* 1:00-2:30pm  Definition of exam conflict:

= Two exams at the same time

Lecture 25 = Kimball BI1 or
CS211 — Fall 2005 = Three or more exams within
* Check your final exam 24 hours
schedule!

GUI Drawing & Painting GUI Drawing & Painting

* For a drawing area:

= Extend JPanel and override the method
public void paintComponent(Graphics g)

 paintComponent must contain the code to completely
draw everything in your drawing panel

* Note that paintComponent is never called directly
= [t is requested via a call to repaint
Example: myDrawingPanel.repaint();

Java Graphics Exceptions

* The Graphics class has methods for colors, fonts, and
various shapes and lines
= setColor (Color c)
= drawOval (int x, int y, int width, int height)
= fillOval (int x, int y, int width, int height)
= drawLine (int x1, int y1, int x2, int y2)
= drawString(String str, int x, int y)
» Take a look at
= java.awt.Graphics (for basic graphics)
= java.awt.Graphics2D (for “more sophisticated” control)

= the 2D Graphics Trail
(http://java.sun.com/docs/books/tutorial/2d/index.html)




Exceptions

* Exceptions are usually thrown to indicate that
something bad has happened

= JOException on failure to open or read a file

= ClassCastException if attempted to cast an object to a
type that is not a supertype of the dynamic type of the
object

= NullPointerException if tried to dereference null

= ArrayIndexOutOfBoundsException if tried to access an
array element at index i <0 or > the length of the array

Handling Exceptions

» Exceptions can be caught by the program using a
try/catch block
 catch clauses are called exception handlers

Integer x = null;

try {
x = (Integer)y;
System.out.println(x.intValue());

} catch (ClassCastException e) {
System.out.println("y was not an Integer");

} catch (NullPointerException e) {
System.out.println("y was null");

}

Defining Your Own Exceptions

» An exception is an object (like everything else in Java)
= You can define your own exceptions and throw them

class MyOwnException extends Exception {}

if (input == null) {
throw new MyOwnException();
}

The throws Clause

* In general, any exception you throw must be either declared
in the method header or caught

void foo(int input) throws MyOwnException {
if (input == null) {
throw new MyOwnException();
}

}

* Note: throws means “can throw”, not “does throw”
* Subtypes of RuntimeException do not have to be declared
(e.g., NullPointerException, ClassCastException)

= These represent exceptions that can occur during “normal operation
of the Java Virtual Machine”

How Exceptions are Handled

« If the exception is thrown from inside a try/catch block with
a handler for that exception (or a superclass of the
exception), then that handler is executed

= Otherwise, the method terminates abruptly and control is passed
back to the calling method

« If the calling method can handle the exception (i.e., if the
call occurred within a try/catch block with a handler for that
exception) then that handler is executed

= Otherwise, the calling method terminates abruptly, etc.

* If none of the calling methods handle the exception, the
entire program terminates with an error message

Generic Types in Java 5.0




Generic Types in Java 5.0 Example

* When using a collection (e.g.,  Generics in Java 1.5 provide a
LinkedList, HashSet, HashMap), way to communicate T, the type //removes 4-letter words from c
we generally have a single type of elements in a collection, to the //elements must be Strings
T of elements that we store in it compiler static void purge(Collection c) {
(e.g., Integer, String « Compiler can check that you D| Iterator i = c.iterator();
. . [e) while (i.hasNext()) {
* Before 1.5, when extracting an havelused the collection if (((String)i.next()).length() == 4)
element, had to cast it to T consistently i.remove() ;
before we could invoke T's « Result is safer and more-efficient 1}
methods code
= Compiler could not check that //removes 4-letter words from c
the cast was correct at compile- static void purge(Collection<String> ¢) {
time, since it didn't know what T 2| Iterator<string> i = c.iterator();
was Q| while (i.hasNext()) {
] c if (i.next().length() == 4)
. Inf:onvemenl and unsafe, could i remove/();
fail at runtime 1

Another Example Type Casting

« In effect, Java inserts the correct cast automatically, based

on the declared type

HashMap grades = new HashMap();

grades.put("John" ,new Integer(67));
O | grades.put("Jane" ,new Integer(88)); . " " .
S| grades . put ("Fred",new Integer(72)): * In this example, grades.get("John") is automatically cast to

Integer x = (Integer)grades.get("John"); Integer

System.out.println(x.intValue()) ;

HashMap<String,Integer> grades = HashMap<String,Integer> grades =

new HashMap<String,Integer>(); new HashMap<String,Integer>();

; grades.put ("John" ,new Integer(67)); grades.put ("John" ,new Integer(67));
@ | grades.put("Jane" ,new Integer(88)); grades.put("Jane" ,new Integer(88));
< grades.put ("Fred",new Integer(72)); grades.put ("Fred",new Integer(72));

Integer x = grades.get("John"); Integer x = grades.get("John");

System.out.println(x.intValue()); System.out.println(x.intValue());

An Aside: Autoboxing Using Generic Types

* Java 5.0 also has autoboxing and auto-unboxing of e <T>isread, “of T”

primitive types, so the example can be further simplified = For example: Stack<Integer> is read, “Stack of Integer”

HashMap<String, Integer> grades =
new HashMap<String,Integer>();

grades.put ("John" ,new Integer(67)); * The type annotation <T> informs the compiler that
grades.put ("Jane",new Integer(88)); . . :
grades .put ("Fred" new Integer(72)) s all extractions from this collection should be

Integer x = grades.get("John");

automatically cast to T
System.out.println(x.intValue())

HashMap<String,Integer> grades =

new HashMap<String, Integer>(); * Specify type in declaration, can be checked at
grades.put ("John", 67); . . B .. ..
grades . put ("Jane", 88); compile time — can eliminate explicit casts

grades.put ("Fred", 72);
System.out.println(grades.get("John“)) ;




Advantage of Generics

* Declaring Collection<String> ¢ tells us something about
the variable ¢ (i.e., ¢ holds only Strings)
= This is true wherever ¢ is used

= The compiler checks this and won’t compile code that violates this

» Without use of generic types, explicit casting must be used
= A cast tells us something the programmer thinks is true at a single
point in the code

= The Java virtual machine checks whether the programmer is right
only at runtime

Subtypes

Stack<Integer> is nof a subtype of Stack<Object>

Stack<Integer> s = new Stack<Integer>() ;
s.push (new Integer(7));

Stack<Object> t = s; //gives compiler error
t.push("bad idea");
System.out.println(s.pop() .intValue()) ;

However, Stack<Integer> is a subtype of Stack
(for backward compatibility with 1.4.2)

Stack<Integer> s = new Stack<Integer>() ;
s.push(new Integer(7));

Stack t = s; //compiler allows this
t.push("bad idea") ;
System.out.println(s.pop() .intValue()) ;

Programming Generic Types

public interface List<E> { //E is a type variable
void add(E x);
Iterator<E> iterator();

}

public interface Iterator<E> {
E next();
boolean hasNext() ;

}

 To use the generic type declaration List<E>, supply
an actual type argument, e.g., List<Integer>

« All occurrences of the formal type parameter (E in this

case) are replaced by the actual type argument
(Integer in this case)

Wildcards

void printCollection(Collection c) {
Iterator i = c.iterator();
while (i.hasNext()) {
System.out.println(i.next());

old

1}

void printCollection(Collection<Object> c) {
for (Object e : c) {
System.out.println(e) ;
1}

void printCollection(Collection<?> c) {
for (Object e : c) {
System.out.println(e) ;

good bad

13

Bounded Wildcards

static void sort(List<? extends Comparable> c) {

}

* Note that if we declared the parameter € to be of type
List<Comparable> then we could not sort an object of
type List<String> (even though String is a subtype of
Comparable)

= Suppose Java treated List<String> as a subtype of
List<Comparable>

= Then, for instance, a method passed an object of type
List<Comparable> would be able to store Integers in our
List<String>

» Wildcards let us specify exactly what types are allowed

Generic Methods

Adding all elements of an array to a Collection

static void a2c(Object[] a, Collection<?> c) {
-8 for (Object o : a) {
o c.add(o); //compile time error

2]
O | static <T> void a2c (T[] a, Collection<T> c) {
o) for (T o : a) {
o c.add(o); //ok
O n




Some Generic Type Examples

class Simplex<V> extends AbstractSet<V> implements Set<V>
public Simplex (Collection<? extends V> collection)

public static <V> Set<Set<V>> boundary
(Set<? extends Simplex<V>> simplexSet)

public class Triangulation<V> implements lterable<Simplex<V>>
public Triangulation (Simplex<V> simplex)

public lterator<Simplex<V>> iterator ()

For More Info on Generic Types

* See the online Java Tutorial for more information
on generic types and generic methods

* The text also has a section (4.7) on this topic




