

Union and Find

- We break this problem into two operations
 - Union: Combine two sets
 - Find: Given an item, determine the "name" of the set that contains it
- Many applications
 Checking components of a
 - dynamic graph
 - Computers in a network: Can p communicate with q?
 - Minimum Spanning Trees

Union/Find using Reverse Trees • Find

The root is the "name" of the set

- Follow links to root
- Time O(n) in the worst case
- Union
 - Link root of one tree to the root of the other
 - Time O(1) in the worst case

An Improvement: Union by Size

- Note: Every union takes one tree and moves everything in it one step farther from the root
- Implement using arrays Initially, all items have no parent and size 1
- Idea: Make the *smaller* tree be the one that moves down

Time for union is O(1)
Time for find is O(log n)

Definition for $\alpha(n)$

 $\frac{\text{Definition}}{\alpha(n)} (inverse \ Ackerman's \ function)$ $\alpha(n) = \text{least } x \text{ such that } A(x,x) \ge n$

Note that $\alpha(n) \le 4$ for any integer n that we are <u>ever</u> likely to encounter

Union/Find Analysis

- Theorem (Tarjan)

 Using weighted union and path compression, a sequence of n union/find operations takes time $O(n \alpha(n))$
- Note that α(n) ≤ 4 for any integer n that we are *ever* likely to encounter
- Is the α(n) factor really necessary?
 - Yes: Tarjan showed a *lower* bound of Ω(n α(n)) for union/find
 - Claim: the inverse Ackerman's function is *not* just an artifact of this one problem

Lower Envelope of Line Segments

• Given n line segments in the plane, what is the worst-case complexity of their *lower envelope*?

 $\Theta(n \ \alpha(n))$

Two MST Algorithms (Both Greedy)

Kruskal's Algorithm

Prim's Algorithm

• Choose the shortest edge e such that

· We use Union/Find to

• e is not yet processed

check this

• e does not make a cycle

- Choose the shortest edge e such that
 - e touches the tree
 - e touches a vertex not in the tree

