Finish Graphs

Lecture 24
CS211 — Fall 2005

Announcements

 Paul Chew’s office hour
for today (Thursday, Nov
17) is cancelled

Graph Overview

* Graph Definitions
= Directed graph (digraph)
= Undirected graph
= Directed acyclic graph (dag)
= Paths & cycles

* Graph Properties
= Graph coloring
= Planarity
= Bipartite graphs

» Graph Implementations
= Adjacency matrix
= Adjacency lists

« Graph Searching

= Breadth First Search (BFS)
= Depth First Search (DFS)

« Graph Algorithms

= Single-source shortest paths
« Dijkstra’s Algorithm
= Minimum spanning tree
(MST)
* Prim’s Algorithm

* Kruskal’s Algorithm

New Problem: Connected Components

Given a set of edges (p,q),
quickly determine if some p’ and
q’ are in the same connected
component
= Def: Two vertices are in the
same connected component if
there is a path between them

Example:
= Given edges (1,3) (2,3) (5.4)
(6,3) (7,5) (1,6) (7,0) (0,8) (5,2)

= Are 4 and 6 in the same ( )
component?

How can a computer resolve this
for a large set?

Union and Find

» We break this problem into
two operations

= Union: Combine two sets

= Find: Given an item,
determine the “name” of the
set that contains it

* Many applications
= Checking components of a
dynamic graph
= Computers in a network:
Can p communicate with q?
= Minimum Spanning Trees

Union/Find using Reverse Trees

* Find
= Follow links to root
= Time O(n) in the worst case

6y 5
6) = Link root of one tree to the

root of the other
= Time O(1) in the worst case

The root is the “name” of the set




An Improvement: Union by Size

 Note: Every union takes
one tree and moves
everything in it one step

« Implement using arrays

« Initially, all items have no
parent and size 1

farther from the root

* Idea: Make the smaller tree
be the one that moves
down I S

 Can show
= Time for union is O(1)
= Time for find is O(log n)

Union-by-Size Lemma

Lemma = Ifanode is at level h then it
. . is within a tree of size at
A tre<? with height h least 2"
contains at least 2" nodes
Proof
. . . Corollary
= The only way in which a
node can change its level is
when it is within the smaller
of two trees participating in
a union Proof

Thus, when any node x
drops a level, the tree that it
is within doubles in size (or

= The largest possible tree
contains n nodes, so the
deepest node is at level log n

Union-by-Size + Path Compression

* Idea: Every time we “find”
something, we update
every item we touch so that
it points at the root

= This is almost free since we
have to touch these items

anyway

= Intuition: next time we find Ad(e)
one of these items it will be
quicker

* Does this help?

more)
Yes, It Helps
Theorem (Tarjan) Definition (Ackerman’s
Using weighted union and function)

path compression, a
sequence ofn umgn/ﬁnd A(.9)=2q ifp=0
operations takes time 0 if g=0, p>0
O(n a(n)) .

2 if g=1, p>0

A(p -1,A(p,q -1))

« The function a(n) is the ifg>1, p>0

inverse of Ackerman’s

function and it grows very
slowly This definition is a bit

different from the text’s
version, but both have
similar properties

Ackerman’s Function

«A(0,Q)=2+...+2=2q =« Thus A(2,4)=2'6=65,536

s A(l,q)=2x*..%2=24 « Each level does the
operation from the previous

-2 level q times

* A9 = 2 * What is A(3,4)?
(a height-q stack of 2’s)
* So A(4,4) must be
extremely large

Definition for a(n)

Definition (inverse Ackerman’s function)
o(n) = least x such that A(x,x) >n

Note that a(n) <4 for any integer n that we are
ever likely to encounter




Union/Find Analysis

Theorem (Tarjan) « Is the au(n) factor really
Using weighted union and necessary?

path compression, a

sequence of n union/find = Yes: Tarjan showed a lower
operations takes time bound of

O(n a(n)) Q(n ayn)) for union/find

= Claim: the inverse
* Note that a(n) < 4 for any Ackerman’s function is not

integer n that we are ever just an artifact of this one
likely to encounter problem

Lower Envelope of Line Segments

* Given n line segments in
the plane, what is the
worst-case complexity of
their lower envelope?

O(n a(n))

Union/Find Summary

 Operations
= Union: Combine two sets
= Find: Given an item, determine the path
“name” of the set that contains it compression

Use reverse trees
= Each item points at its parent
= The root is the “name” of the set

Union-by-Size

= Always make the larger tree be the /
root find(6)

Path Compression
= Every time we “find” something,
we update every item we touch so
that it points at the root

Result

= n operations take time O(n a(n))

Two MST Algorithms (Both Greedy)

Kruskal’s Algorithm Prim’s Algorithm

* Choose the shortest edge ¢ * Choose the shortest edge e

such that such that
= ¢ is not yet processed = ¢ touches the tree
= ¢ does not make a cycle = ¢ touches a vertex not in the
* We use Union/Find to tree
check this

Kruskal’s MST Algorithm

KruskalMST(G):  Can sort the edges initially (or
E = edges of G; can use a PQ)
forest = empty;
do . . N
B _ + Use Union/Find to check for
<u,v> = least cost edge of E; ) N
_ X different trees and to combine
E=E-<uv>;
trees

if (u and v in different trees)
forest = forest U <u,v>;
while (E is nonempty);

Total worst-case time:
return forest O(m log m) when using
adjacency lists

Time is O(n? + m log m) for
adjacency matrix




