
1

Finish Graphs

Lecture 24
CS211 – Fall 2005

Announcements
• Paul Chew’s office hour 

for today (Thursday, Nov 
17) is cancelled

Graph Overview
• Graph Definitions

Directed graph (digraph)
Undirected graph
Directed acyclic graph (dag)
Paths & cycles

• Graph Properties
Graph coloring
Planarity
Bipartite graphs

• Graph Implementations
Adjacency matrix
Adjacency lists

• Graph Searching
Breadth First Search (BFS)
Depth First Search (DFS)

• Graph Algorithms
Single-source shortest paths

• Dijkstra’s Algorithm
Minimum spanning tree 
(MST)

• Prim’s Algorithm
• Kruskal’s Algorithm

New Problem: Connected Components
• Given a set of edges (p,q), 

quickly determine if some p’ and 
q’ are in the same connected 
component

Def: Two vertices are in the 
same connected component if 
there is a path between them

• Example:
Given edges (1,3) (2,3) (5,4) 
(6,3) (7,5) (1,6) (7,0) (0,8) (5,2)
Are 4 and 6 in the same 
component?

• How can a computer resolve this 
for a large set?

8

7

6

5

1

4

3

2

0

Union and Find
• We break this problem into 

two operations

Union: Combine two sets

Find: Given an item, 
determine the “name” of the 
set that contains it

• Many applications
Checking components of a 
dynamic graph
Computers in a network: 
Can p communicate with q?
Minimum Spanning Trees

Union/Find using Reverse Trees
• Find

Follow links to root
Time O(n) in the worst case

• Union
Link root of one tree to the 
root of the other
Time O(1) in the worst case

1

2 3

4 9

8 6 7

5

The root is the “name” of the set



2

An Improvement: Union by Size
• Note: Every union takes 

one tree and moves 
everything in it one step 
farther from the root

• Idea: Make the smaller tree 
be the one that moves 
down

• Can show
Time for union is O(1)
Time for find is O(log n)

• Implement using arrays
• Initially, all items have no 

parent and size 1

parent size

0
1
2
.
.
.
.
.
.
n

Union-by-Size Lemma
Lemma

A tree with height h 
contains at least 2h nodes

Proof
The only way in which a 
node can change its level is 
when it is within the smaller
of two trees participating in 
a union
Thus, when any node x
drops a level, the tree that it 
is within doubles in size (or 
more)

If a node is at level h then it 
is within a tree of size at 
least 2h

Corollary
Worst-case time for find is 
O(log n) where n is the 
total number of items

Proof
The largest possible tree 
contains n nodes, so the 
deepest node is at level log n

Union-by-Size + Path Compression
• Idea: Every time we “find” 

something, we update 
every item we touch so that 
it points at the root

This is almost free since we 
have to touch these items 
anyway
Intuition: next time we find 
one of these items it will be 
quicker

• Does this help?

1

52

8 9 7 3 4

0 6
1

52

8 9 7 3

4

0

6

find(6)

Yes, It Helps
Theorem (Tarjan)

Using weighted union and 
path compression, a 
sequence of n union/find 
operations takes time 
O(n α(n))

• The function α(n) is the 
inverse of Ackerman’s 
function and it grows very
slowly

Definition (Ackerman’s 
function)

A(p,q)=2q if p = 0
0 if q=0, p>0
2 if q=1, p>0
A(p -1,A(p,q -1))

if q>1, p>0

This definition is a bit 
different from the text’s 
version, but both have 
similar properties

Ackerman’s Function
• A(0,q) = 2 + … + 2 = 2q

• A(1,q) = 2 ∗ … ∗ 2 = 2q

• A(2,q) = 22
(a height-q stack of 2’s)

• Thus A(2,4) = 216 = 65,536

• Each level does the 
operation from the previous 
level q times

• What is A(3,4)?

• So A(4,4) must be 
extremely large

2

Definition for α(n)

Definition (inverse Ackerman’s function)
α(n) = least x such that A(x,x) ≥ n

Note that α(n) ≤ 4 for any integer n that we are 
ever likely to encounter



3

Union/Find Analysis
Theorem (Tarjan)

Using weighted union and 
path compression, a 
sequence of n union/find 
operations takes time 
O(n α(n))

• Note that α(n) ≤ 4 for any 
integer n that we are ever
likely to encounter

• Is the α(n) factor really 
necessary?

Yes: Tarjan showed a lower
bound of 
Ω(n α(n)) for union/find

Claim: the inverse 
Ackerman’s function is not
just an artifact of this one 
problem

Lower Envelope of Line Segments

• Given n line segments in 
the plane, what is the 
worst-case complexity of 
their lower envelope?

Θ(n α(n)) lower envelope

Union/Find Summary
• Operations

Union: Combine two sets
Find: Given an item, determine the 
“name” of the set that contains it

• Use reverse trees
Each item points at its parent
The root is the “name” of the set

• Union-by-Size
Always make the larger tree be the 
root

• Path Compression
Every time we “find” something, 
we update every item we touch so 
that it points at the root

• Result
n operations take time O(n α(n))

1

52

8 9 7 3 4

0 6
1

52

8 9 7 3

4

0

6

find(6)

path 
compression

Two MST Algorithms (Both Greedy)

Kruskal’s Algorithm

• Choose the shortest edge e 
such that

e is not yet processed
e does not make a cycle

• We use Union/Find to 
check this

Prim’s Algorithm

• Choose the shortest edge e 
such that

e touches the tree 
e touches a vertex not in the 
tree

Kruskal’s MST Algorithm
KruskalMST(G):

E = edges of G; 
forest = empty;
do

<u,v> = least cost edge of E;
E = E - <u,v>;
if (u and v in different trees)

forest = forest ∪ <u,v>;
while (E is nonempty);
return forest

• Can sort the edges initially (or 
can use a PQ)

• Use Union/Find to check for 
different trees and to combine 
trees

• Total worst-case time: 
O(m log m) when using 
adjacency lists

• Time is O(n2 + m log m) for 
adjacency matrix


