

Announcements

- Paul Chew's office hour for today (Thursday, Nov 17) is cancelled

Graph Overview

- Graph Definitions
- Directed graph (digraph)
- Undirected graph
- Directed acyclic graph (dag)
- Paths \& cycles
- Graph Properties
- Graph coloring
- Planarity
- Bipartite graphs
- Graph Implementations
- Adjacency matrix
- Adjacency lists
- Graph Searching
- Breadth First Search (BFS)
- Depth First Search (DFS)
- Graph Algorithms
- Single-source shortest paths - Dijkstra's Algorithm
- Minimum spanning tree (MST)
- Prim's Algorithm
- Kruskal's Algorithm

Graph Overview	
- Graph Definitions - Directed graph (digraph) - Undirected graph - Directed acyclic graph (dag)	- Graph Searching - Breadth First Search (BFS) - Depth First Search (DFS)
- Paths \& cycles - Graph Properties - Graph coloring - Planarity - Bipartite graphs	- Graph Algorithms - Single-source shortest paths - Dijkstra's Algorithm - Minimum spanning tree (MST)
- Graph Implementations - Adjacency matrix - Adjacency lists	- Prim's Algorithm - Kruskal's Algorithm

Union and Find

New Problem: Connected Components

- Given a set of edges (p,q), quickly determine if some p ' and q' are in the same connected component
- Def: Two vertices are in the same connected component if there is a path between them
- Example:
- Given edges $(1,3)(2,3)(5,4)$ $(6,3)(7,5)(1,6)(7,0)(0,8)(5,2)$
- Are 4 and 6 in the same component?

- How can a computer resolve this for a large set?

Union and Find	
- We break this problem into two operations - Union: Combine two sets - Find: Given an item, determine the "name" of the set that contains it	- Many applications - Checking components of a dynamic graph - Computers in a network: Can p communicate with q ? - Minimum Spanning Trees

Union/Find using Reverse Trees

- Find
- Follow links to root
- Time O(n) in the worst case

An Improvement: Union by Size

- Note: Every union takes one tree and moves everything in it one step farther from the root
- Implement using arrays
- Initially, all items have no parent and size 1
- Idea: Make the smaller tree be the one that moves down
- Can show
- Time for union is $\mathrm{O}(1)$
- Time for find is $\mathrm{O}(\log \mathrm{n})$

Union-by-Size Lemma

Lemma

A tree with height h contains at least 2^{h} nodes Proof

- The only way in which a node can change its level is when it is within the smaller of two trees participating in a union
- Thus, when any node x drops a level, the tree that it is within doubles in size (or more)
- If a node is at level h then it is within a tree of size at least 2

Corollary

Worst-case time for find is $\mathrm{O}(\log \mathrm{n})$ where n is the total number of items

Proof

- The largest possible tree contains n nodes, so the deepest node is at level $\log n$

Union-by-Size + Path Compression

- Idea: Every time we "find" something, we update every item we touch so that it points at the root
- This is almost free since we have to touch these items anyway
- Intuition: next time we find one of these items it will be quicker
- Does this help?

Ackerman's Function

- $A(0, q)=2+\ldots+2=2 q$
- Thus $\mathrm{A}(2,4)=2^{16}=65,536$
- $\mathrm{A}(1, \mathrm{q})=2 * \ldots * 2=2 \mathrm{q}$
- Each level does the operation from the previous level q times
- $\mathrm{A}(2, \mathrm{q})=22$
- What is $\mathrm{A}(3,4)$?
(a height-q stack of 2's)
- So $A(4,4)$ must be extremely large

Definition for $\alpha(\mathrm{n})$

Definition (inverse Ackerman's function) $\alpha(\mathrm{n})=$ least x such that $\mathrm{A}(\mathrm{x}, \mathrm{x}) \geq \mathrm{n}$

Note that $\alpha(\mathrm{n}) \leq 4$ for any integer n that we are ever likely to encounter

Union/Find Analysis

Theorem (Tarjan)
Using weighted union and path compression, a sequence of n union/find operations takes time $\mathrm{O}(\mathrm{n} \alpha(\mathrm{n}))$

- Note that $\alpha(\mathrm{n}) \leq 4$ for any integer n that we are ever likely to encounter
- Is the $\alpha(\mathrm{n})$ factor really necessary?
- Yes: Tarjan showed a lower bound of $\Omega(\mathrm{n} \alpha(\mathrm{n})$) for union/find
- Claim: the inverse Ackerman's function is not just an artifact of this one problem

Lower Envelope of Line Segments

- Given n line segments in the plane, what is the worst-case complexity of their lower envelope?

$\Theta(\mathrm{n} \alpha(\mathrm{n}))$

Union/Find Summary

- Operations
- Union: Combine two sets
- Find: Given an item, determine the "name" of the set that contains it
- Use reverse trees
- Each item points at its parent
- The root is the "name" of the set
- Union-by-Size
- Always make the larger tree be the root
- Path Compression
- Every time we "find" something, we update every item we touch so that it points at the root
- Result
- n operations take time $\mathrm{O}(\mathrm{n} \alpha(\mathrm{n}))$

Kruskal's MST Algorithm

KruskalMST(G):
$E=$ edges of G;
forest = empty;
do
$\langle\mathrm{u}, \mathrm{v}\rangle=$ least cost edge of E ;
$\mathrm{E}=\mathrm{E}-\langle\mathrm{u}, \mathrm{v}\rangle ;$
if (u and v in different trees) forest $=$ forest $\cup<\mathrm{u}, \mathrm{v}>$;
while (E is nonempty);
return forest

- Can sort the edges initially (or can use a PQ)
- Use Union/Find to check for different trees and to combine trees
- Total worst-case time: $\mathrm{O}(\mathrm{m} \log \mathrm{m})$ when using adjacency lists
- Time is $\mathrm{O}\left(\mathrm{n}^{2}+\mathrm{m} \log \mathrm{m}\right)$ for adjacency matrix

Two MST Algorithms (Both Greedy)

Kruskal's Algorithm	Prim's Algorithm
- Choose the shortest edge e such that - e is not yet processed - e does not make a cycle - We use Union/Find to check this	- Choose the shortest edge e such that - e touches the tree - e touches a vertex not in the tree

