
1

DFS &
Intro to GUIs

Lecture 22
CS211 – Fall 2005

Graph Overview
• Graph Definitions

Directed graph (digraph)
Undirected graph
Directed acyclic graph (dag)
Paths & cycles

• Graph Properties
Graph coloring
Planarity
Bipartite graphs

• Graph Implementations
Adjacency matrix
Adjacency lists

• Graph Searching
Breadth First Search (BFS)
Depth First Search (DFS)

• Graph Algorithms
Single-source shortest paths
(Dijkstra’s Algorithm)
Minimum spanning tree
(MST)

• Prim’s Algorithm
• Kruskal’s Algorithm

Depth-First Search
• Follow edges depth-first starting from an arbitrary

vertex s, using a Stack to remember where you
came from

• When you encounter a vertex previously visited, or
there are no outgoing edges, retreat and try another
path

• Eventually visit all vertices reachable from s
• If there are still unvisited vertices, repeat

Easy to see this takes O(m) time

Depth-First Search

Depth-First Search Depth-First Search

2

Depth-First Search Depth-First Search

Depth-First Search Depth-First Search

Depth-First Search Depth-First Search

3

Depth-First Search Depth-First Search

Depth-First Search Depth-First Search

Depth-First Search Depth-First Search

4

Depth-First Search Depth-First Search

Depth-First Search Depth-First Search

Depth-First Search Depth-First Search

5

Depth-First Search Depth-First Search

Depth-First Search Depth-First Search

Depth-First Search DFS Notes

• Same as BFS, except we
use a Stack instead of a
Queue to determine which
edge to explore next

• Can also implement DFS
recursively

The Stack is represented
implicitly via the Stack-
Frames created by the
recursive calls

Initially, vertices are unmarked

for all vertices v {
if (v is marked) continue;
recursiveDFS(v);

}

recursiveDFS (s) {
Mark s:
for (each v adj to s) {

if (v is marked) continue;
recursiveDFS(v);

}
}

6

GUI Motivation
• Interacting with a program

Program Driven
• Statements execute in

sequential, predetermined
order

• Typically use keyboard or
file I/O

Event Driven
• Program waits for user

input to activate certain
statements

• Typically use a GUI
(Graphical User Interface)

• Design...Which to pick?
Program called by another
program?
Program used at command
line?
Program interacts often with
user?
Program used in window
environment?

• How does Java do GUIs?

Java Foundation Classes
• Java Foundation Classes

Classes for building GUIs
Major components

• Swing
• Pluggable look-and-feel

support
• Accessibility API
• Java 2D API
• Drag-and-drop Support
• Internationalization

• Our main focus: Swing
Building blocks of GUIs

• Windows & components
• User interactions

Built upon something called
the AWT (Abstract Window
Toolkit)

• What are the other
things....?

Other Aspects of the JFC
• Pluggable look-and-feel Support

Controls look-and-feel for particular windowing environment
E.g., Windows, Motif

• Accessibility API
Supports assistive technologies such as screen readers and Braille

• Java 2D
Drawing
Includes rectangles, lines, circles, images,

• Drag-and-drop:
Support for drag and drop between Java application and a native
application

• Internationalization
Support for other languages

Brief Example
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Intro extends JFrame {
private int count;
private JButton b = new JButton("Push Me!");
private JLabel label = new JLabel(generateLabel());

public static void main(String[] args) {
JFrame f = new Intro();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(200,100);
f.setVisible(true);

}

public Intro() {
setLayout(new FlowLayout(FlowLayout.LEFT));
add(b);
add(label);
b.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
count++;
label.setText(generateLabel());

}
});

}

private String generateLabel() {
return "Count: "+count;

}
}

GUI Statics vs. GUI Dynamics
• Statics:

what’s drawn on the screen
Components

• E.g., buttons, labels, lists,
sliders

Containers: components that
contain other components

• E.g., frames, panels,
dialog boxes

Layout managers: control
placement and sizing of
components

• Dynamics:
user interactions

Events
• E.g., button-press, mouse-

click, key-press
Listeners: an object that
responds to an event
Helper classes

• E.g., Graphics, Color,
Font, FontMetrics,
Dimension

Overview for Statics

• Determine which components you want
• Choose a top-level container in which to put the

components
• Choose a layout manager to determine how

components are arranged
• Place the components

7

AWT vs. Swing
• AWT

Initial GUI toolkit for Java
Provided a “Java” look and
feel
Basic API: java.awt.*

• Swing
More recent (Java 1.2) GUI
toolkit
Added functionality (new
components)
Supports look and feel for
various platforms
(Windows, Motif, Mac)
Basic API: javax.swing.*

• Did Swing replaced AWT?
Not quite: both use the
AWT event model

Components
• Components = what you see

Visual part of an interface
Represents something with position and size
Can be painted on screen and receive events
Buttons, labels, lists, sliders, etc.

• Examples (see next slide)

Component Examples
import javax.swing.*;
import java.awt.*;

public class ComponentExamples extends JFrame {
public static void main(String[] args) {

ComponentExamples f = new ComponentExamples();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.pack();
f.setVisible(true);

}

public ComponentExamples() {
setLayout(new FlowLayout(FlowLayout.LEFT));
add(new JButton("Button"));
add(new JLabel("Label"));
add(new JComboBox(new String[] { "A", "B","C" }));
add(new JCheckBox("JCheckBox"));
add(new JSlider(0,100));
add(new JColorChooser());

}
}

Containers
• A container is a component that

Can hold other components and
Has a layout manager

• Heavyweight vs. lightweight
A heavyweight component
interacts directly with the host
system
JWindow, JFrame, and JDialog
are heavyweight
Except for these top-level
containers, Swing components
are almost all lightweight

• JPanel is lightweight

• There are three basic top-level
containers

JWindow: top-level window
with no border
JFrame: top-level window with
border and (optional) menu bar
JDialog: used for dialog
windows

• The other important container
JPanel: used mostly to organize
objects within other containers

Creating a Window
import javax.swing.*;

public class Basic1 {
public static void main(String[] args) {

// Create window:
JFrame f = new JFrame("Basic Test!");

// Set 500x500 pixels^2:
f.setSize(500,500);

// Show the window:
f.setVisible(true);

// Quit Java after closing the window:
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

Creating a Window using an Initialization Block

import javax.swing.*;

public class Basic2 {
public static void main(String[] args) {

new B2GUI();
}

}

class B2GUI {
{
JFrame f = new JFrame("Basic Test2!");
f.setSize(500,500);
f.setVisible(true);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

}

8

Creating a Window using a Constructor
import javax.swing.*;
public class Basic3 extends JFrame {

public static void main(String[] args) {
new Basic3();

}

public Basic3() {

// Title window:
setTitle("Basic Test!");

// Set 500x500 pixels^2:
setSize(500,500);

// Show the window:
setVisible(true);

// Quit Java after closing the window:
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

Layout Managers
• A layout manager controls

placement and sizing of
components in a container

If you do not specify a layout
manager, the container will use
a default:

• JPanel default = FlowLayout
• JFrame default =

BorderLayout

• Five common layout managers:
BorderLayout, BoxLayout,
FlowLayout, GridBagLayout,
GridLayout

• General syntax
container.setLayout(new LayoutMan())

• Examples:

JPanel p1 = new JPanel(new
BorderLayout());

JPanel p2 = new JPanel();
p2.setLayout(new BorderLayout());

Some Example Layout Managers
• FlowLayout

Components placed from left to
right in order added
When a row is filled, a new row
is started
Lines can be centered, left-
justified or right-justified (see
FlowLayout constructor)
See also BoxLayout

• GridLayout
Components are placed in grid
pattern (think array)
#rows, #columns defined by
GridLayout constructor
Grid is filled left-to-right, then
top-to-bottom

• BorderLayout:
Divides window into 5 areas:
North, South, East, West,
Center

• Adding components
FlowLayout and GridLayout
use container.add(component)
BorderLayout uses
container.add(component, index)
where index is one of

• BorderLayout.North
• BorderLayout.South
• BorderLayout.East
• BorderLayout.West
• BorderLayout.Center

More Layout Managers
• CardLayout

Tabbed index card look
from Windows

• GridBagLayout
Most versatile, but
complicated

• Custom
Can define your own layout
manager
Best to try Java's layout
managers first...

• Null
Implies no layout manager
Programmer must specify
absolute locations
Provides great control, but
can be dangerous to
application because of
platform dependency

FlowLayout Example
import javax.swing.*;
import java.awt.*;

public class Statics1 {
public static void main(String[] args) {

new S1GUI();
}

}

class S1GUI {

private JFrame f;
private Container c;

public S1GUI() {
f = new JFrame("Statics1");
f.setSize(500,500);
f.setLayout(new FlowLayout(FlowLayout.LEFT));
for (int b = 1; b < 9; b++)

f.add(new JButton("Button "+b));
f.setVisible(true);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

Code Examples
• Basic1.java

Create a window

• Basic2.java
Create a window using an
initialization block

• Basic3.java
Create a window using a
constructor

• Calculator.java
Shows use of JOptionPane
to produce standard dialogs

• ComponentExamples.java
Sample components

• Intro.java
Button & counter

• Statics1.java
FlowLayout example

• Statics2.java
GridLayout example

