
1

More Graphs Lecture 21
CS211 – Fall 2005 Announcements

• Upcoming talk
“The Many Careers of a Computer Scientist”

• Or how a Computer Science degree empowers you to do much more
than code

Dan Huttenlocher, Professor in the Department of Computer
Science and Johnson Graduate School of Management
5:00 PM, Wednesday, November 9th
Upson Lounge
FREE PIZZA!

• ACSU (Association of Computer Science Undergraduates)

Prelim 2 Reminder
• Prelim 2

Tuesday, Nov 15, 7:30-9pm
One week from today!
Topics: all material through
Nov 1
Does not include

• Graphs
• GUIs in Java

• Note that this week’s
Section meetings are last
before the exam

• Exam conflicts
Email Kelly Patwell
(ASAP)

• Prelim 2 Review Session
Sunday, Nov 13,1:30-
3:00pm, Kimball B11
See Exams on course
website for more
information
Individual appointments are
available if you cannot
attend the review session
(email one TA to arrange
appointment)

• Old exams are available for
review on the course
website

Implementing Digraphs
• Adjacency Matrix

g[u][v] is true iff there is an
edge from u to v

• Adjacency List
The list for u contains v iff
there is an edge from u to v

0

3

2 1

3
T2

T1
TT0
3210

3
2
1
0 1 3

2

0

Shortest Paths for Unweighted Graphs
bfsDistance(s):

// s is the start vertex
// dist[v] is length of s-to-v path
// Initially dist[v] = ∞ for all v
dist[s] = 0;
Q.insert(s);

while (Q nonempty) {
v = Q.get();
for (each w adjacent to v) {

if (dist[w] == ∞) {
dist[w] = dist[v]+1;
Q.insert(w);

}
}

}

S BA

C D E

F

Analysis for bfsDistance
• How many times can a

vertex be placed in the
queue?

• How much time for the for-
loop?

Depends on representation
• Adjacency Matrix: O(n)
• Adjacency List: O(mv)

• Time:
O(n2) for adj matrix
O(m+n) for adj list

bfsDistance(s):
// s is the start vertex
// dist[v] is length of s-to-v path
// Initially dist[v] = ∞ for all v
dist[s] = 0;
Q.insert(s);

while (Q nonempty) {
v = Q.get();
for (each w adjacent to v) {

if (dist[w] == ∞) {
dist[w] = dist[v]+1;
Q.insert(w);

}
}

}

2

If There are Edge Costs?
• Idea #1

Add false nodes so that all
edge costs are 1
But what if edge costs are
large?
What if the costs aren’t
integers?

• Idea #2
Nothing “interesting”
happens at the false nodes

• Can’t we just jump ahead
to the next “real” node

Rule: always do the closest
(real) node first
Use the array dist[] to

• Report answers
• Keep track of what to do

next

Dijkstra’s Algorithm
• Intuition

Edges are threads; vertices are
beads
Pick up at s; mark each node as it
leave the table

• Note: Negative edge-costs are not
allowed

s is the start vertex
c(i,j) is the cost from i to j
Initially, vertices are unmarked
dist[v] is length of s-to-v path
Initially, dist[v] = ∞, for all v

dijsktra(s):
dist[s] = 0;
while (some vertices are unmarked) {

v = unmarked vertex with
smallest dist;

Mark v;
for (each w adj to v) {

dist[w] = min
(dist[w], dist[v] + c(v,w));

}
}

S BA

C D E

F

5

49
2

1
1

2
1

9

2

Proof for Dijkstra’s Algorithm
• Claim: When vertex v is marked,

dist[v] is the length of the
shortest path from s to v

• Proof
Suppose there is a shorter path
P from s to v
Consider the first edge of P that
links a marked vertex to an
unmarked vertex

• Such an edge must exist
because we know s is marked
and v is not

• Call this edge (u’,v’)
Note that the length of the path
from s to u’ to v’ is less than
the length of P

• Thus v’ would be chosen in
the algorithm instead of v

• Contradiction!

s

u’ v’

v

marked unmarked

Dijkstra’s Algorithm using Adj Matrix
• While-loop is done n

times
• Within the loop

Choosing v takes O(n) time
• Could do this faster using

PQ, but no reason to
For-loop takes O(n) time

• Total time = O(n2)

s is the start vertex
c(i,j) is the cost from i to j
Initially, vertices are unmarked
dist[v] is length of s-to-v path
Initially, dist[v] = ∞, for all v

dijsktra(s):
dist[s] = 0;
while (some vertices are unmarked) {

v = unmarked vertex with
smallest dist;

Mark v;
for (each w adj to v) {

dist[w] = min
(dist[w], dist[v] + c(v,w));

}
}

Dijkstra’s Algorithm using Adj List
• Looks like we need a PQ

Problem: priorities are updated
as algorithm runs
Can insert pair (v,dist[v]) in PQ
whenever dist[v] is updated
At most m things in PQ

• Time O(n + m log m)
• Using a more complicated PQ

(e.g., Pairing Heap), time can
be brought down to
O(m + n log n)

s is the start vertex
c(i,j) is the cost from i to j
Initially, vertices are unmarked
dist[v] is length of s-to-v path
Initially, dist[v] = ∞, for all v

dijsktra(s):
dist[s] = 0;
while (some vertices are unmarked) {

v = unmarked vertex with
smallest dist;

Mark v;
for (each w adj to v) {

dist[w] = min
(dist[w], dist[v] + c(v,w));

}
}

Dijkstra’s Algorithm for Digraphs
• Algorithm works on both undirected

and directed graphs without
modification

• As before: Negative edge-costs are
not allowed

s is the start vertex
c(i,j) is the cost from i to j
Initially, vertices are unmarked
dist[v] is length of s-to-v path
Initially, dist[v] = ∞, for all v

dijsktra(s):
dist[s] = 0;
while (some vertices are unmarked) {

v = unmarked vertex with
smallest dist;

Mark v;
for (each w adj to v) {

dist[w] = min
(dist[w], dist[v] + c(v,w));

}
}

S BA

C D E

F

5

49
2

1
1

2
1

9

2

3

Greedy Algorithms
• Dijkstra’s Algorithm is an

example of a Greedy Algorithm
• The Greedy Strategy is an

algorithm design technique
Like Divide & Conquer

• The Greedy Strategy is used to
solve optimization problems

The goal is to find the best
solution

• Works when the problem has the
greedy-choice property

A global optimum can be
reached by making locally
optimum choices

• Problem: Given an amount of
money, find the smallest number
of coins to make that amount

• Solution: Use a Greedy
Algorithm

Give as many large coins as
you can

• This greedy strategy produces
the optimum number of coins for
the US coin system

• Different money system ⇒
greedy strategy may fail

For example: suppose the US
introduces a 4¢ coin

Minimum Spanning Trees
Definition

A spanning tree of an undirected
graph G is a tree whose nodes
are the vertices of G and whose
edges are a subset of the edges of
G

Definition
A Minimum Spanning Tree
(MST) for a weighted graph G is
the spanning tree of least cost
(sum of edge-weights)

• Alternately, an MST can be
defined as the least-cost set of
edges so that all the vertices are
connected

This has to be a tree… Why?

• A greedy strategy works for this
problem

Add vertices one at a time
Always add the one that is
closest to the current tree
This is called Prim’s Algorithm

An Example Graph and Its MST

A

E

C
D

G

F

B

7

4

8

27

9

1

3

6

11 10

5

A

E

C
D

G

F

B

4

8

2

1

3

5

Prim’s Algorithm
s is the start vertex
c(i,j) is the cost from i to j
Initially, vertices are unmarked
dist[v] is length of smallest tree-to-v
edge
Initially, dist[v] = ∞, for all v

prim(s):
dist[s] = 0;
while (some vertices are unmarked) {

v = unmarked vertex with
smallest dist;

Mark v;
for (each w adj to v) {

dist[w] = min[dist[w], c(v,w)];
}

}

• Runtime analysis
O(v2) for adj matrix

• While-loop is executed v
times

• For-loop takes O(v) time
O(e + v log v) for adj list

• Use a PQ
• Regular PQ produces time

O(v + e log e)
• Can improve to

O(e + v log v) by using
fancier heap

Similar Code Structures
while (some vertices are unmarked) {

v = best of unmarked vertices;
Mark v;
for (each w adj to v)

Update w;
}

• bfsDistance
best: next in queue
update:
dist[w] = dist[v]+1

• dijkstra
best: next in PQ
update:dist[w] =min [
dist[w],dist[v]+cost(v,w)]

• prim
best: next in PQ
update: dist[w] = min [
dist[w],cost(v,w)]

Remembering Your Choices
• How can you remember

which choices were made?
Whenever dist[w] is updated
we can remember the
current v by using
parent[w] = v;

Can use the parent info to
construct the bfs tree, the
shortest path tree, or the
minimum spanning tree

while (some vertices are unmarked) {
v = best of unmarked vertices;
Mark v;
for (each w adj to v)

Update w;
if (w changed) parent[w] = v;

}

4

Depth-First Search
• Follow edges depth-first starting from an arbitrary

vertex s, using a Stack to remember where you
came from

• When you encounter a vertex previously visited, or
there are no outgoing edges, retreat and try another
path

• Eventually visit all vertices reachable from s
• If there are still unvisited vertices, repeat

Easy to see this takes O(m) time

Depth-First Search

Depth-First Search Depth-First Search

Depth-First Search Depth-First Search

5

Depth-First Search Depth-First Search

Depth-First Search Depth-First Search

Depth-First Search Depth-First Search

6

Depth-First Search Depth-First Search

Depth-First Search Depth-First Search

Depth-First Search Depth-First Search

7

Depth-First Search Depth-First Search

Depth-First Search Depth-First Search

Depth-First Search Depth-First Search

8

Depth-First Search Depth-First Search

Depth-First Search DFS Notes

• Same as BFS, except we use a Stack instead of a
Queue to determine which edge to explore next

• Can also implement DFS recursively
The Stack is represented implicitly in the Stack Frames
created by the recursive calls

