
1

Graphs & Graph Algorithms
Lecture 20

CS211 – Fall 2005

Announcements
• Upcoming talk

“The Many Careers of a Computer Scientist”
• Or how a Computer Science degree empowers you to do much more

than code
Dan Huttenlocher, Professor in the Department of Computer
Science and Johnson Graduate School of Management
5:00 PM, Wednesday, November 9th
Upson Lounge
FREE PIZZA!

• ACSU (Association of Computer Science Undergraduates)

This is not a Graph

0
10
20
30
40
50
60
70
80
90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North

...not the kind we mean, anyway

These are Graphs

K5 K3,3

=

Applications of Graphs

• Communication networks
• Routing and shortest path problems
• Commodity distribution (flow)
• Traffic control
• Resource allocation
• Geometric modeling
• ...

Graph Definitions
• A directed graph (or digraph) is a pair (V,E) where

V is a set
E is a set of ordered pairs (u,v) where u,v∈V

• Usually require u ≠ v (no self-loops)

• An element of V is called a vertex (pl. vertices) or node
• An element of E is called an edge or arc

• |V| = size of V, often denoted n
• |E| = size of E, often denoted m

2

Example Directed Graph

Example:

V = {a,b,c,d,e,f }
E = {(a,b), (a,c), (a,e), (b,c), (b,d), (b,e), (c,d),

(c,f), (d,e), (d,f), (e,f)}

|V| = 6, |E| = 11

b

a

c
d

e
f

Example Undirected Graph

An undirected graph is just like a directed graph,
except the edges are unordered pairs (sets) {u,v}

Example: b

a

c

e

d

f

V = {a,b,c,d,e,f }
E = {{a,b}, {a,c}, {a,e}, {b,c}, {b,d}, {b,e}, {c,d}, {c,f },

{d,e}, {d,f }, {e,f }}

Some Graph Terminology
• Vertices u and v are called the source and sink of the

directed edge (u,v), respectively
• Vertices u and v are called the endpoints of (u,v)
• Two vertices are adjacent if they are connected by an edge
• The outdegree of a vertex u in a directed graph is the

number of edges for which u is the source
• The indegree of a vertex v in a directed graph is the number

of edges for which v is the sink
• The degree of a vertex u in an undirected graph is the

number of edges of which u is an endpointb

a

c
d

e
f

b

a

c

e

d

f

More Graph Terminology

• A path is a sequence v0,v1,v2,...,vp of vertices such that
(vi,vi+1) ∈ E, 0 ≤ i ≤ p – 1

• The length of a path is its number of edges
In this example, the length is 5

• A path is simple if it does not repeat any vertices
• A cycle is a path v0,v1,v2,...,vp such that v0 = vp

• A cycle is simple if it does not repeat any vertices except
the first and last

• A graph is acyclic if it has no cycles
• A directed acyclic graph is called a dag

v0

v5

b

a

c
d

e
f

Is this a dag?

• Intuition: If it’s a dag, there should be a “first” vertex (i.e., a
vertex with indegree zero)

• This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively delete indegree-
0 vertices until the graph disappears

Is this a dag?

• Intuition: If it’s a dag, there should be a “first” vertex (i.e., a
vertex with indegree zero)

• This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively delete indegree-
0 vertices until the graph disappears

3

Is this a dag?

• Intuition: If it’s a dag, there should be a “first” vertex (i.e., a
vertex with indegree zero)

• This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively delete indegree-
0 vertices until the graph disappears

Is this a dag?

• Intuition: If it’s a dag, there should be a “first” vertex (i.e., a
vertex with indegree zero)

• This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively delete indegree-
0 vertices until the graph disappears

Is this a dag?

• Intuition: If it’s a dag, there should be a “first” vertex (i.e., a
vertex with indegree zero)

• This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively delete indegree-
0 vertices until the graph disappears

Is this a dag?

• Intuition: If it’s a dag, there should be a “first” vertex (i.e., a
vertex with indegree zero)

• This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively delete indegree-
0 vertices until the graph disappears

Is this a dag?

• Intuition: If it’s a dag, there should be a “first” vertex (i.e., a
vertex with indegree zero)

• This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively delete indegree-
0 vertices until the graph disappears

Is this a dag?

• Intuition: If it’s a dag, there should be a “first” vertex (i.e., a
vertex with indegree zero)

• This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively delete indegree-
0 vertices until the graph disappears

4

Is this a dag?

• Intuition: If it’s a dag, there should be a “first” vertex (i.e., a
vertex with indegree zero)

• This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively delete indegree-
0 vertices until the graph disappears

Topological Sort
• Just computed a topological sort of the dag

A numbering of the vertices such that all edges go from
lower- to higher-numbered vertices

• Useful in job scheduling with precedence
constraints

0

1

2

3

4
5

Graph Coloring
• A coloring of an undirected graph is an assignment

of a color to each node such that no two adjacent
vertices get the same color

• How many colors are needed to color this graph?

Graph Coloring
• A coloring of an undirected graph is an assignment

of a color to each node such that no two adjacent
vertices get the same color

• How many colors are needed to color this graph?
3

An Application of Coloring
• Vertices are jobs
• Edge (u,v) is present if jobs u and v each require access to

the same shared resource, and thus cannot execute
simultaneously

• Colors are time slots to schedule the jobs
• Minimum number of colors needed to color the graph =

minimum number of time slots required

Planarity
• A graph is planar if it can be embedded in the

plane with no edges crossing

• Is this graph planar?

5

Planarity
• A graph is planar if it can be embedded in the

plane with no edges crossing

• Is this graph planar?
Yes

Planarity
• A graph is planar if it can be embedded in the

plane with no edges crossing

• Is this graph planar?
Yes

Kuratowski's Theorem

A graph is planar if and only if it does not contain a
copy of K5 or K3,3 (possibly with other nodes along
the edges shown)

Detecting Planarity

K3,3K5 Every planar graph
is 4-colorable

(Appel & Haken, 1976)

The
Four-Color

Theorem

Bipartite Graphs

• A directed or undirected graph is bipartite if the
vertices can be partitioned into two sets such that
all edges go between the two sets

Bipartite Graphs

• The following are equivalent
G is bipartite
G is 2-colorable
G has no cycles of odd length

6

Amsterdam

Rome

Boston

Atlanta

London

Paris

Copenhagen

Munich

Ithaca

New York

Washington

1202
1380

1214
1322

1356

Find a path of minimum distance that visits every city

1002

512
216

441

189
160

15561323

419

210

224 132

660 505

1078

Traveling Salesperson Implementing Digraphs
• Adjacency Matrix

g[u][v] is true iff there is an
edge from u to v

• Adjacency List
The list for u contains v iff
there is an edge from u to v

0

3

2 1

3
T2

T1
TT0
3210

3
2
1
0 1 3

2

0

Implementing Weighted Digraphs
• Adjacency Matrix

g[u][v] is c iff there is an edge
of cost c from u to v

• Adjacency List
The list for u contains v,c iff
there is an edge from u to v
that has cost c

0

3

2 1

3
82

201
11150
3210

3
2
1
0

15
8

11

20

1 15

0 8

2 20

3 11

Implementing Undirected Graphs
• Adjacency Matrix

g[u][v] is true iff there is an
edge from u to v

• Adjacency List
The list for u contains v iff
there is an edge from u to v

0

3

2 1

T3
TT2

TT1
TTT0
3210

3
2
1
0 1 2

2

0

3

0

1

0

Adjacency Matrix or Adjacency List?
n = number of vertices
m = number of edges
mu = number of edges leaving u

• Adjacency Matrix
Uses space O(n2)
Can iterate over all edges in
time O(n2)
Can answer “Is there an edge
from u to v?” in O(1) time
Better for dense (i.e., lots of
edges) graphs

• Adjacency List
Uses space O(m+n)
Can iterate over all edges in
time O(m+n)
Can answer “Is there an
edge from u to v?” in O(mu)
time
Better for sparse (i.e., fewer
edges) graphs

Goal: Find Shortest Path in a Graph
• Finding the shortest (min-cost) path in a graph is a

problem that occurs often
Find the least-cost route between Ithaca and Detroit
Result depends on our notion of cost

• least mileage
• least time
• cheapest
• least boring

All of these “costs” can be represented as edge costs on a
graph

• How do we find a shortest path?

7

Shortest Paths for Unweighted Graphs
bfsDistance(s):

// s is the start vertex
// dist[v] is length of s-to-v path
// Initially dist[v] = ∞ for all v
dist[s] = 0;
Q.insert(s);

while (Q nonempty) {
v = Q.get();
for (each w adjacent to v) {

if (dist[w] == ∞) {
dist[w] = dist[v]+1;
Q.insert(w);

}
}

}

S BA

C D E

F

Analysis for bfsDistance
• How many times can a

vertex be placed in the
queue?

• How much time for the for-
loop?

Depends on representation
• Adjacency Matrix: O(n)
• Adjacency List: O(mv)

• Time:
O(n2) for adj matrix
O(m+n) for adj list

bfsDistance(s):
// s is the start vertex
// dist[v] is length of s-to-v path
// Initially dist[v] = ∞ for all v
dist[s] = 0;
Q.insert(s);

while (Q nonempty) {
v = Q.get();
for (each w adjacent to v) {

if (dist[w] == ∞) {
dist[w] = dist[v]+1;
Q.insert(w);

}
}

}

If There are Edge Costs?
• Idea #1

Add false nodes so that all
edge costs are 1
But what if edge costs are
large?
What if the costs aren’t
integers?

• Idea #2
Nothing “interesting”
happens at the false nodes

• Can’t we just jump ahead
to the next “real” node

Rule: always do the closest
(real) node first
Use the array dist[] to

• Report answers
• Keep track of what to do

next

Dijkstra’s Algorithm
• Intuition

Edges are threads; vertices are
beads
Pick up at s; mark each node as it
leave the table

• Note: Negative edge-costs are not
allowed

s is the start vertex
c(i,j) is the cost from i to j
Initially, vertices are unmarked
dist[v] is length of s-to-v path
Initially, dist[v] = ∞, for all v

dijsktra(s):
dist[s] = 0;
while (some vertices are unmarked) {

v = unmarked vertex with
smallest dist;

Mark v;
for (each w adj to v) {

dist[w] = min
(dist[w], dist[v] + c(v,w));

}
}

S BA

C D E

F

5

49
2

1
1

2
1

9

2

Dijkstra’s Algorithm using Adj Matrix
• While-loop is done n

times
• Within the loop

Choosing v takes O(n) time
• Could do this faster using

PQ, but no reason to
For-loop takes O(n) time

• Total time = O(n2)

s is the start vertex
c(i,j) is the cost from i to j
Initially, vertices are unmarked
dist[v] is length of s-to-v path
Initially, dist[v] = ∞, for all v

dijsktra(s):
dist[s] = 0;
while (some vertices are unmarked) {

v = unmarked vertex with
smallest dist;

Mark v;
for (each w adj to v) {

dist[w] = min
(dist[w], dist[v] + c(v,w));

}
}

Dijkstra’s Algorithm using Adj List
• Looks like we need a PQ

Problem: priorities are updated
as algorithm runs
Can insert pair (v,dist[v]) in PQ
whenever dist[v] is updated
At most m things in PQ

• Time O(n + m log m)
• Using a more complicated PQ

(e.g., Pairing Heap), time can
be brought down to
O(m + n log n)

s is the start vertex
c(i,j) is the cost from i to j
Initially, vertices are unmarked
dist[v] is length of s-to-v path
Initially, dist[v] = ∞, for all v

dijsktra(s):
dist[s] = 0;
while (some vertices are unmarked) {

v = unmarked vertex with
smallest dist;

Mark v;
for (each w adj to v) {

dist[w] = min
(dist[w], dist[v] + c(v,w));

}
}

8

Dijkstra’s Algorithm for Digraphs
• Algorithm works on both undirected

and directed graphs without
modification

• As before: Negative edge-costs are
not allowed

s is the start vertex
c(i,j) is the cost from i to j
Initially, vertices are unmarked
dist[v] is length of s-to-v path
Initially, dist[v] = ∞, for all v

dijsktra(s):
dist[s] = 0;
while (some vertices are unmarked) {

v = unmarked vertex with
smallest dist;

Mark v;
for (each w adj to v) {

dist[w] = min
(dist[w], dist[v] + c(v,w));

}
}

S BA

C D E

F

5

49
2

1
1

2
1

9

2

Greedy Algorithms
• Dijkstra’s Algorithm is an

example of a Greedy Algorithm
• The Greedy Strategy is an

algorithm design technique
Like Divide & Conquer

• The Greedy Strategy is used to
solve optimization problems

The goal is to find the best
solution

• Works when the problem has the
greedy-choice property

A global optimum can be
reached by making locally
optimum choices

• Problem: Given an amount of
money, find the smallest number
of coins to make that amount

• Solution: Use a Greedy
Algorithm

Give as many large coins as
you can

• This greedy strategy produces
the optimum number of coins for
the US coin system

• Different money system ⇒
greedy strategy may fail

For example: suppose the US
introduces a 4¢ coin

