
1

ADT
Odds & Ends

Lecture 19
CS211 – Fall 2005

Announcements
• Prelim 2

Tuesday, Nov 15, 7:30-9pm
Two weeks from today!
Topics: all material through
today (Nov 1)
Does not include

• GUIs in Java
• Graphs

• Exam conflicts
Email Kelly Patwell (soon)

• Prelim 2 Review Session
Sunday, Nov 13,1:30-
3:00pm, Kimball B11
See Exams on course
website for more
information
Individual appointments are
available if you cannot
attend the review session
(email one TA to arrange
appointment)

• Old exams are available for
review on the course
website

Mathematical Contest in Modeling 2006
• International competition
• A team of three undergrads

chooses one of two open-ended
(“real-world”) problems

• Important dates
Nov 2, 8: info and training
Nov 11-15: local (Cornell)
contest
Feb 2-6: International MCM
2006

• For more information:
http://www.math.cornell.edu/~mcm/

• Recent problems included
Estimating max “safe” number
of people for a given type of
public facilities
Studying hunting strategies for
velociraptor dinosaurs based on
fossil data
Comparing various grading
policies to fight “grade
inflation”
Providing guidelines for
selecting among bicycle wheel
designs to optimize the
performance on a given track
Considering effects of different
airline overbooking strategies
on overall profitability

A5 Correction

• In problem 7b, the desired runtime should be
O(n + k log n) [instead of O(n + k log k)]

Linear & Quadratic Probing
• These are techniques in which all

data is stored directly within the
hash table array

• Linear Probing
Probe at h(X), then at

h(X) + 1
h(X) + 2
…
h(X) + i

Leads to primary clustering
• Long sequences of filled

cells

• Quadratic Probing
Similar to Linear Probing in
that data is stored within the
table
Probe at h(X), then at

h(X)+1
h(X)+4
h(X)+9
…
h(X)+ i2

Works well when
• λ < 0.5
• table size is prime

Hash Table Pitfalls

Good hash function is required

Watch the load factor (λ), especially for Linear &
Quadratic Probing

2

Example Balancing Scheme: 234-Trees

• Nodes have 2, 3, or 4 children (and contain 1, 2, or 3 keys, respectively)
• All leaves are at the same level
• Basic rule for insertion: We hate 4-nodes

Split a 4-node whenever you find one while coming down the tree
Note: this requires that parent is not a 4-node

• Delete is harder than insert
For delete, we hate 2-nodes
As in BSTs, cannot delete from a nonleaf so we use same BST trick: delete
successor and recopy its data

B

A C

Place in
parent

A B C

Splitting a 4-node

234-Tree Analysis
• Time for insert or get is

proportional to tree’s
height

• How big is tree’s height h?
• Let n be the number of

nodes in a tree of height h
n is large if all nodes are 4-
nodes
n is small if all nodes are 2-
nodes

• Can use this to show
h = O(log n)

Analysis of tree height:
• Let N be the number of nodes, n be

the number of items, and h be the
height

• Define h so that a tree consisting of
a single node is height 0

• It’s easy to see 1+2+4+…+2h ≤ N ≤
1+4+16+…+4h

• It’s also easy to see N ≤ n ≤ 3N
• Using the above, we have

n ≥ 1+2+4+…+2h = 2h+1-1
• Rewriting, we have

h ≤ log(n+1) - 1 or h = O(log n)
Thus, Dictionary operations on 234-

trees take time O(log n) in the
worst case

234-Tree Implementation
• Can implement all nodes as 4-nodes

Wasted space

• Can allow various node sizes
Requires recopying of data whenever a node changes
size

• Can use BST nodes to emulate 2-, 3-, or 4-nodes

Using BSTs to Emulate 234-Trees
• A 2-node can be

represented with a standard
BST node

• A 4-node can be
represented with three BST
nodes

• A 3-node can be
represented with two BST
nodes (in two different
ways)

A B C

CA

B
4-node

A

B

B

A3-node

or
A B

Red-Black Trees
• We need a way to tell when

an emulated 234-node
starts and ends

• We mark the nodes
Black: “root” of 234-node
Red: belongs to parent
Requires one bit per node

• 234-tree rules become rules
for rotations and color
changes in red-black trees

• Result:
One black node per 234-
node
Number of black nodes on
path from root to leaf is
same as height of 234-tree
All paths from root to leaf
have same number of black
nodes
On any path: at most one red
node per black node
Thus tree height for red-
black tree is O(log n)

Balanced Tree Schemes
• AVL trees [1962]

Named for initials of
Russian creators
Uses rotations to ensure
heights of child-trees differ
by at most 1

• 23-Trees [Hopcroft 1970]
Similar to 234-tree, but
repairs have to move back
up the tree

• B-Trees [Bayer &
McCreight 1972]

• Red-Black Trees [Bayer
1972]

Not the original name

• Red-black convention &
relation to 234-trees
[Guibas & Stolfi 1978]

• Splay Trees [Sleator &
Tarjan 1983]

• Skip Lists [Pugh 1990]
developed at Cornell

3

Selecting a Dictionary Scheme
• Use an unordered array for

small sets (< 20 or so)
• Use a Hash Table if possible

Cannot efficiently do some ops
that are easy with BSTs
Running times are expected
rather than worst-case

• Use an ordered array if few
changes after initialization

• B-Trees are best for large data
sets, external storage

Widely used within database
software

• Otherwise, Red-Black Trees
are current scheme of choice

• Skip Lists are supposed to be
easier to implement

But shouldn’t have to
implement—use existing code

• Splay trees are useful if some
items are accessed more often
than others

But if you know which items
are most-commonly accessed,
use a separate data structure

Selecting a Priority Queue Scheme
• Use an unordered array for

small sets (< 20 or so)
• Use a sorted array or sorted

linked list if few insertions
are expected

• Use an array of linked lists
if there are few priorities

Each linked list is a queue of
equal-priority items
Very easy to implement

• Otherwise, use a Heap if
you can

• Heap + Hashtable
Allow change-priority
operation to be done in
O(log n) expected time

• Balanced tree schemes
Useful if need special ops

• There are a number of
alternate implementations
that allow additional
operations

Skew heaps
Pairing heaps
Fibonacci heaps
…

ADT Summary
• Stack

Push/pop
O(1) worst-case time using
linked list

• Queue
Put/get
O(1) worst-case time using
linked list

• Priority Queue
Put/getMax
O(log n) worst-case time using
heap (if max heap-size is
known)
O(log n) expected time using
heap + table-doubling

• Set
Insert/remove/query
O(1) worst-case time using bit
vector (if universe is small)
O(1) expected time using hash-
table + table-doubling

• Dictionary
Insert/remove/update/find
O(1) expected time using hash-
table + table-doubling
O(log n) worst-case time using
balanced tree

• Still to come: Graphs
Not included on Prelim 2

