ADT
Odds & Ends

Lecture 19
CS211 - Fall 2005

Announcements

* Prelim 2
= Tuesday, Nov 15, 7:30-9pm
= Two weeks from today!

= Topics: all material through
today (Nov 1)
= Does not include
* GUIs in Java
« Graphs

« Exam conflicts
= Email Kelly Patwell (soon)

* Prelim 2 Review Session
= Sunday, Nov 13,1:30-
3:00pm, Kimball B11
= See Exams on course
website for more
information

Individual appointments are

available if you cannot

attend the review session

(email one TA to arrange

appointment)

* Old exams are available for
review on the course
website

Mathematical Contest in Modeling 2006

« International competition
* A team of three undergrads
chooses one of two open-ended
(“real-world”) problems
« Important dates
= Nov 2, 8: info and training

= Nov 11-15: local (Cornell)
contest

= Feb 2-6: International MCM
2006

 For more information:

http://www.math.cornell.edu/~mem/

* Recent problems included
= Estimating max “safe” number
of people for a given type of
public facilities

Studying hunting strategies for
velociraptor dinosaurs based on
fossil data

= Comparing various grading
policies to fight “grade
inflation”

Providing guidelines for
selecting among bicycle wheel
designs to optimize the
performance on a given track

Considering effects of different
airline overbooking strategies
on overall profitability

A5 Correction

¢ In problem 7b, the desired runtime should be
O(n + k log n) [instead of O(n + k log k)]

Linear & Quadratic Probing

* These are techniques in which all

data is stored directly within the
hash table array

* Linear Probing
= Probe at h(X), then at
h(X) + 1
h(X) +2

h(X) +i
= Leads to primary clustering
« Long sequences of filled
cells

* Quadratic Probing
= Similar to Linear Probing in
that data is stored within the
table
= Probe at h(X), then at
h(X)+1
h(X)+4
h(X)+9
h(X)+ i2
= Works well when
¢ A<0.5

« table size is prime

Hash Table Pitfalls

= Good hash function is required

= Watch the load factor (1), especially for Linear &

Quadratic Probing




Example Balancing Scheme: 234-Trees

* Nodes have 2, 3, or 4 children (and contain 1, 2, or 3 keys, respectively)
 All leaves are at the same level
« Basic rule for insertion: We hate 4-nodes
= Split a 4-node whenever you find one while coming down the tree
= Note: this requires that parent is not a 4-node
« Delete is harder than insert
= For delete, we hate 2-nodes
= As in BSTs, cannot delete from a nonleaf so we use same BST trick: delete
successor and recopy its data

~—
—_—

S

234-Tree Analysis

« Time for insert or get is
proportional to tree’s
height

* How big is tree’s height h? -

* Let n be the number of
nodes in a tree of height /

= nis large if all nodes are 4- .
nodes .

= n is small if all nodes are 2-
nodes .

« Can use this to show

Analysis of tree height:

Let N be the number of nodes, n be
the number of items, and / be the
height

Define / so that a tree consisting of
a single node is height 0

It’s easy to see 1+2+4+.. 420 <N <
1+4+16+.. . +4h

It’s also easy to see N <n <3N
Using the above, we have

n2 14244+, 420 =20l
Rewriting, we have

h <log(n+1) - 1 or h = O(log n)

Thus, Dictionary operations on 234-

h=0(logn)

trees take time O(log n) in the
worst case

234-Tree Implementation

» Can implement all nodes as 4-nodes
= Wasted space

 Can allow various node sizes

= Requires recopying of data whenever a node changes
size

» Can use BST nodes to emulate 2-, 3-, or 4-nodes

Using BSTs to Emulate 234-Trees

A 2-node can be
represented with a standard
BST node

A 4-node can be
represented with three BST
nodes

A 3-node can be
represented with two BST
nodes (in two different
ways)

Red-Black Trees

* We need a way to tell when < Result:
an emulated 234-node One black node per 234-
starts and ends node
Number of black nodes on
path from root to leaf is
same as height of 234-tree

» We mark the nodes
= Black: “root” of 234-node
= Red: belongs to parent

) ’ All paths from root to leaf
® Requires one bit per node have same number of black
* 234-tree rules become rules nodes

for rotations and color On any path: at most one red

changes in red-black trees node per black node

Thus tree height for red-
black tree is O(log n)

Balanced Tree Schemes

* AVL trees [1962] .
= Named for initials of
Russian creators
= Uses rotations to ensure
heights of child-trees differ
by at most 1
* 23-Trees [Hopcroft 1970]
= Similar to 234-tree, but
repairs have to move back .
up the tree
* B-Trees [Bayer & .
McCreight 1972]

Red-Black Trees [Bayer
1972]

= Not the original name
Red-black convention &
relation to 234-trees
[Guibas & Stolfi 1978]

Splay Trees [Sleator &
Tarjan 1983]

Skip Lists [Pugh 1990]

= developed at Cornell




Selecting a Dictionary Scheme

* Use an unordered array for
small sets (< 20 or so)
» Use a Hash Table if possible
= Cannot efficiently do some ops
that are easy with BSTs
= Running times are expected
rather than worst-case
 Use an ordered array if few
changes after initialization
» B-Trees are best for large data
sets, external storage

= Widely used within database
software

* Otherwise, Red-Black Trees
are current scheme of choice

« Skip Lists are supposed to be
easier to implement
= But shouldn’t have to
implement—use existing code
« Splay trees are useful if some
items are accessed more often
than others
= But if you know which items
are most-comm(\nly :lccessed‘
use a separate data structure

Selecting a Priority Queue Scheme

* Use an unordered array for
small sets (< 20 or s0)
 Use a sorted array or sorted
linked list if few insertions
are expected
 Use an array of linked lists
if there are few priorities
= Each linked list is a queue of
equal-priority items
= Very easy to implement
 Otherwise, use a Heap if
you can

* Heap + Hashtable
= Allow change-priority
operation to be done in
O(log n) expected time
* Balanced tree schemes
= Useful if need special ops
* There are a number of
alternate implementations
that allow additional
operations
= Skew heaps
= Pairing heaps
= Fibonacci heaps

ADT Summary

« Stack
= Push/pop
= O(1) worst-case time using
linked list
e Queue
= Put/get
= O(1) worst-case time using
linked list
* Priority Queue
= Put/getMax
= O(log n) worst-case time using
heap (if max heap-size is
known)

= O(log n) expected time using
heap + table-doubling

* Set
= Insert/remove/query
= O(1) worst-case time using bit
vector (if universe is small)
= O(1) expected time using hash-
table + table-doubling
« Dictionary
= Insert/remove/update/find

= O(1) expected time using hash-
table + table-doubling

= O(log n) worst-case time using
balanced tree

« Still to come: Graphs

= Not included on Prelim 2




