

Mathematical Contest in Modeling 2006

- International competition
- A team of three undergrads chooses one of two open-ended ("real-world") problems
- Important dates
- Nov 2, 8: info and training
- Nov 11-15: local (Cornell) contest
- Feb 2-6: International MCM 2006
- For more information http://www.math.cornell.edu/~mcm/
- Recent problems included
- Estimating max "safe" number of people for a given type of public facilities
- Studying hunting strategies for velociraptor dinosaurs based on fossil data
- Comparing various grading policies to fight "grade inflation"
- Providing guidelines for selecting among bicycle wheel designs to optimize the performance on a given track
- Considering effects of different airline overbooking strategies on overall profitability

Announcements

- Prelim 2
- Tuesday, Nov 15, 7:30-9pm
- Two weeks from today!
- Topics: all material through today (Nov 1)
- Does not include
- GUIs in Java
- Graphs
- Exam conflicts
- Email Kelly Patwell (soon)
- Prelim 2 Review Session
- Sunday, Nov 13,1:303:00pm, Kimball B11
- See Exams on course website for more information
- Individual appointments are available if you cannot attend the review session (email one TA to arrange appointment)
- Old exams are available for review on the course website

A5 Correction

- In problem 7 b , the desired runtime should be $\mathrm{O}(\mathrm{n}+\mathrm{k} \log \mathrm{n})[$ instead of $\mathrm{O}(\mathrm{n}+\mathrm{k} \log \mathrm{k})$]

Linear \& Quadratic Probing

- These are techniques in which all data is stored directly within the hash table array	- Quadratic Probing - Similar to Linear Probing in that data is stored within the table
- Linear Probing - Probe at $\mathrm{h}(\mathrm{X})$, then at $\begin{aligned} & \mathrm{h}(\mathrm{X})+1 \\ & \mathrm{~h}(\mathrm{X})+2 \end{aligned}$	- Probe at $\mathrm{h}(\mathrm{X})$, then at $\begin{aligned} & h(X)+1 \\ & h(X)+4 \\ & h(X)+9 \end{aligned}$
$h(X)+i$	$h(X)+i^{2}$
- Leads to primary clustering - Long sequences of filled cells	- Works well when - $\lambda<0.5$ - table size is prime

Hash Table Pitfalls

- Good hash function is required
- Watch the load factor (λ), especially for Linear \& Quadratic Probing

Example Balancing Scheme: 234-Trees

- Nodes have 2, 3, or 4 children (and contain 1, 2, or 3 keys, respectively)
- All leaves are at the same level
- Basic rule for insertion: We hate 4-nodes
- Split a 4-node whenever you find one while coming down the tree
- Note: this requires that parent is not a 4-node
- Delete is harder than insert
- For delete, we hate 2-nodes
- As in BSTs, cannot delete from a nonleaf so we use same BST trick: delete successor and recopy its data

234-Tree Implementation

- Can implement all nodes as 4-nodes
- Wasted space
- Can allow various node sizes
- Requires recopying of data whenever a node changes size
- Can use BST nodes to emulate 2-, 3-, or 4-nodes

234-Tree Analysis

- Time for insert or get is proportional to tree's height
- How big is tree's height h ?
- Let n be the number of nodes in a tree of height h
- n is large if all nodes are 4nodes
- n is small if all nodes are $2-$ nodes
- Can use this to show $\mathrm{h}=\mathrm{O}(\log \mathrm{n})$

Analysis of tree height:

- Let N be the number of nodes, n be the number of items, and h be the height
- Define h so that a tree consisting of a single node is height 0
- It's easy to see $1+2+4+\ldots+2^{\mathrm{h}} \leq \mathrm{N} \leq$ $1+4+16+\ldots+4^{\mathrm{h}}$
- It's also easy to see $\mathrm{N} \leq \mathrm{n} \leq 3 \mathrm{~N}$
- Using the above, we have $n \geq 1+2+4+\ldots+2^{h}=2^{h+1}-1$
- Rewriting, we have $\mathrm{h} \leq \log (\mathrm{n}+1)-1$ or $\mathrm{h}=\mathrm{O}(\log \mathrm{n})$
Thus, Dictionary operations on 234 trees take time $\mathrm{O}(\log n)$ in the worst case

Using BSTs to Emulate 234-Trees

 represented with three BST nodes

A 3-node can be represented with two BST nodes (in two different ways)

Red-Black Trees

- We need a way to tell when an emulated 234-node starts and ends
- We mark the nodes
- Black: "root" of 234-node
- Red: belongs to parent
- Requires one bit per node
- 234-tree rules become rules for rotations and color changes in red-black trees
- Result:
- One black node per 234node
- Number of black nodes on path from root to leaf is same as height of 234 -tree
- All paths from root to leaf have same number of black nodes
- On any path: at most one red node per black node
- Thus tree height for redblack tree is $\mathrm{O}(\log \mathrm{n})$

Balanced Tree Schemes

- AVL trees [1962]
- Named for initials of Russian creators
- Uses rotations to ensure heights of child-trees differ by at most 1
- 23-Trees [Hopcroft 1970]
- Similar to 234-tree, but repairs have to move back up the tree
- B-Trees [Bayer \&

McCreight 1972]

- Red-Black Trees [Bayer 1972]
- Not the original name
- Red-black convention \& relation to 234-trees
[Guibas \& Stolfi 1978]
- Splay Trees [Sleator \& Tarjan 1983]
- Skip Lists [Pugh 1990]
- developed at Cornell

Selecting a Dictionary Scheme

- Use an unordered array for small sets (<20 or so)
- Use a Hash Table if possible
- Cannot efficiently do some ops that are easy with BSTs
- Running times are expected rather than worst-case
- Use an ordered array if few changes after initialization
- B-Trees are best for large data sets, external storage
- Widely used within database software
- Otherwise, Red-Black Trees are current scheme of choice
- Skip Lists are supposed to be easier to implement
- But shouldn't have to
implement-use existing code
- Splay trees are useful if some items are accessed more often than others
- But if you know which items are most-commonly accessed, use a separate data structure

Selecting a Priority Queue Scheme

- Use an unordered array for small sets (<20 or so)
- Use a sorted array or sorted linked list if few insertions are expected
- Use an array of linked lists if there are few priorities
- Each linked list is a queue of equal-priority items
- Very easy to implement
- Otherwise, use a Heap if you can
- Heap + Hashtable
- Allow change-priority operation to be done in $\mathrm{O}(\log \mathrm{n})$ expected time
- Balanced tree schemes
- Useful if need special ops
- There are a number of alternate implementations that allow additional operations
- Skew heaps
- Pairing heaps
- Fibonacci heaps

ADT Summary

- Stack
- Push/pop
- $\mathbf{O}(\mathbf{1})$ worst-case time using linked list
- Queue
- Put/get
- O(1) worst-case time using linked list
- Priority Queue
- Put/getMax
- $\mathbf{O}(\log \mathbf{n})$ worst-case time using heap (if max heap-size is known)
- O($\log \mathbf{n})$ expected time using heap + table-doubling
- Set
- Insert/remove/query
- O(1) worst-case time using bit vector (if universe is small)
- O(1) expected time using hashtable + table-doubling
- Dictionary
- Insert/remove/update/find
- O(1) expected time using hashtable + table-doubling
- O(log n) worst-case time using balanced tree
- Still to come: Graphs
- Not included on Prelim 2

