ADTs & the Java
Collections
Framework

Lecture 18
CS211 - Fall 2005

Announcements

* Prelim 1 regrade requests are due today!

Recall: Useful ADTs

« Stack
= Push/pop
= O(1) worst-case time using
linked list
e Queue
= Put/get
= O(1) worst-case time using
linked list
* Priority Queue
= Put/getMax
= O(log n) worst-case time using

heap (if max heap-size is
known)

= O(log n) expected time using
heap + table-doubling

* Set
= Insert/remove/query
= O(1) worst-case time using bit
vector (if universe is small)
= O(1) expected time using hash-
table + table-doubling
« Dictionary
= Insert/remove/update/find
= O(1) expected time using hash-
table + table-doubling
= O(log n) worst-case time using
balanced tree

Dictionary Implementations

* Goal: Want guaranteed time-per-
operation

 Ordered Array
= Better than unordered array
because Binary Search can
be used « Idea: Use a Binary Search Tree
» Unordered Linked-List (BST)
= Ordering doesn’t help
¢ Direct Address Table
= Small universe = limited
usage

» Hashtables

= O(1) expected time for
Dictionary operations

« BST Property:

Deleting from a BST

Cases:
* Delete a leaf

= casy

* Delete a node with just one
child

= delete and replace with child

* Delete a node with two
children
= delete node’s successor

= write successor’s data into
node

« How do we find the
successor?

« The successor always has
at most one child. Why?

* Would work just as well
using predecessor instead
of successor

BST Performance

* Time for insert(), find(), * How balanced is a random
update(), remove() is O(h) tree?
where £ is the height of the = If items are inserted in
tree random order then the
expected height of a BST is
O(log n) where n is the
number of items
« If deletion is allowed
= Tree is no longer random

* How bad can / be?

* Operations are fast if tree is
balanced = Tree is likely to become
unbalanced

Analysis Sketch for Random BST

* Only the number of items and their order is important

= Can restrict our attention to BSTs containing items
{1,....n}
s

* We assume that each item is equally likely to appear as the
root

* Define H(n) = expected height of BST of size n
» Ifitem i is the root then expected height is

We average this over all possible i
» Can solve the resulting recurrence (by induction) to show

Why use a BST instead of a Hashtable?

 If we use a balanced BST * Note that balanced BST

scheme then we achieve schemes can be difficult to
guaranteed worst-case time implement

bound of O(log n) for typical = But there are lots of reliable
Dictionary ops codes for these schemes

. available on the Web
* There are some operations that

. = Java includes a balanced
can be efficient on BSTs, but avameiudes @ batanee

BST scheme among its

very inefficient on Hashtables standard packages
report-elements-in-order (java.util. TreeMap and
getMin java.util. TreeSet)
getMax

select(k) // find the k-th element
(maintain size of each subtree by
using an additional size field in
each node)

Java Collections Framework

Java Collections Framework

* Collections: holders that let + Goal: conciseness

you store and organize = A few concepts that are
objects in useful ways for broadly useful
efficient access = Not an exhaustive set of

useful concepts

* Since Java 1.2, the package
java.util includes interfaces
and classes for a general
collection framework

« Two types of concepts are
provided
= Interfaces (i.e., ADTs)

= Implementations

JCF Interfaces and Classes

* Interfaces * Classes
= Collection = HashSet
= Set (no duplicates) = TreeSet
= SortedSet = ArrayList
= List (duplicates OK) = LinkedList
= Map (i.e., Dictionary) = HashMap
= SortedMap = TreeMap
= [terator
= [terable

ListIterator

java.util.Collection<E> (an interface)

* public int size();

= Return number of elements in collection
* public boolean isEmpty();

= Return true iff collection holds no elements
* public boolean add (Object x);

= Make sure the collection includes x; returns true if collection has changed
(some collections allow duplicates, some don’t)

* public boolean contains (Object x);
= Returns true iff collection contains x (uses equals() method)
* public boolean remove (Object x);

= Removes a single instance of x from the collection; returns true if
collection has changed

* public Iterator<E> iterator ();

= Returns an Iterator that steps through elements of collection

java.util.Iterator<E> (an interface)

* public boolean hasNext ();
= Returns true if the iteration has more elements

* public E next ();
= Returns the next element in the iteration
= Throws NoSuchElementException if no next element

* public void remove ();

= The element most-recently returned by next() is removed from the
collection

= Throws IllegalStateException if next() not yet used or if remove()
already called

= Throws UnsupportedOperationException if remove() not supported

Additional Methods of Collection

* public Object [] toArray ()
= Returns a new array containing all the elements of this collection
* public <T> T[] toArray (T[] dest)

= Returns an array containing all the elements of this collection; uses
dest as that array if it can

* Bulk Operations:
= public boolean containsAll (Collection c);
= public boolean addAll (Collection c¢);
= public boolean removeAll (Collection c);
= public boolean retainAll (Collection c);
= public void clear ();

java.util.Set<E> (an interface)

+ Set extends Collection * Write a method that checks
® Set inherits all its methods if a given word is within a
from Collection Set of words

* A Set contains no
duplicates
= [f you attempt to add() an
element twice then the
second add() will return
false (i.e., the Set has not
changed)

« Write a method that
removes all words longer
than 5 letters from a Set

* Write methods for the union
and intersection of two Sets

Set Implementations

* java.util.HashSet<E> (a hashtable)

= Constructors
public HashSet ();
public HashSet (Collection c);
public HashSet (int initialCapacity);
public HashSet (int initialCapacity, float loadFactor);

* java.util.TreeSet (a balanced BST [red-black tree])

= Constructors
public TreeSet ();
public TreeSet (Collection c);

java.util.SortedSet<E> (an interface)

* SortedSet extends Set

* For a SortedSet, the iterator() returns the elements in sorted
order

* Methods (in addition to those inherited from Set):
= public E first ();
+ Returns the first (lowest) object in this set
= public E last ();
+ Returns the last (highest) object in this set
= public Comparator<? super E> comparator ();

* Returns the Comparator being used by this sorted set if there is one;
returns null if the natural order is being used

java.lang.Comparable<T> (an interface)

public int compareTo (T x);
Returns a value (< 0), (= 0), or (> 0)
* (< 0) implies this is before x
* (=0) implies this.equals(x) is true
* (>0) implies this is after x

* Many classes implement Comparable
= String, Double, Integer, Char, java.util.Date,...

= If'a class implements Comparable then that is
considered to be the class’s natural ordering

java.util.Comparator<T> (an interface)

public int compare (T x1, T x2);
Returns a value (< 0), (=0), or (> 0)
¢ (<0)implies x1 is before x2
* (=0) implies x1.equals(x2) is true
* (>0) implies x1 is after x2

» Can often use a Comparator when a class’s natural order is
not the one you want
= String. CASE_INSENSITIVE_ORDER is a predefined Comparator

= java.util.Collections.reverseOrder() returns a Comparator that
reverses the natural order

SortedSet Implementations

* java.util. TreeSet<E>
= This is the only class that implements SortedSet

= TreeSet’s constructors
public TreeSet ();

public TreeSet (Collection<? extends E> c);

» Write a method that prints out a SortedSet of words
in order

* Write a method that prints out a Set of words in
order

java.util.List<E> (an interface)

« List extends Collection
« Items in a list can be accessed via their index (position in list)
« The add() method always puts an item at the end of the list
* The iterator() returns the elements in list-order
* Methods (in addition to those inherited from Collection):
= public E get (int index);
* Returns the item at position index in the list
= public E set (int index, E x);
* Places x at position index, replacing previous item; returns the previous item
= public void add (int index, E x);
« Places x at position index, shifting items to make room
= public E remove (int index);
* Remove item at position index, shifting items to fill the space; returns the
removed item
= public int indexOf (Object x);
* Return the index of the first item in the list that equals x (x.equals())

List Implementations

 java.util. ArrayList<E> (an array; expands via array-

doubling)
= Constructors
public ArrayList ();
public ArrayList (int initialCapacity);

public ArrayList (Collection<? extends E> c¢);

* java.util.LinkedList <E> (a doubly-linked list)

= Constructors
public LinkedList ();
public LinkedList (Collection<? extends E> c);

» Both include some additional useful methods specific to

that class

Efficiency Depends on Implementation

* Object x = list.get(k); « Write a Stack class
= O(1) time for ArrayList

= O(k) time for LinkedList « Write a Queue class

* list.remove(0);
= O(n) time for ArrayList
= O(1) time for LinkedList

« Write a PriorityQueue class
that works on Comparable
objects

« If (set.contains(x))...

= O(1) expected time for
HashSet

= O(log n) for TreeSet

Summary

Collection

size
isEmpty
contains
iterator
toArray

add
remove

i
I
Set B — i 1| ArrayList
|
get
HashSet P e !
add !
SortedSet remove
<]‘"”"”j indexOf LinkedList
comparator } .
first
last TreeSet

java.util.Map<K,V> (an interface)

* Map does not extend Collection
« A Map contains key/value pairs instead of individual elements
* Methods
= public V put (K key, V value);
* Associates value with key in the map; returns the old value associated with
key or null if the key did not previously appear in the map
= public V get (Object key);
+ Returns the object to which this key is mapped or null if there is no such key
= public boolean containsKey (Object key);
+ True iff Map contains a pair using the given key
= public boolean containsValue (Object value);
* True iff there is at least one pair with this value
= public V remove (Object key);
+ Removes any mapping for the key; returns old value associated with key if
there was one (null otherwise)

More Map Methods

* Other methods
= public int size ();
+ Return the number of key/value pairs in the Map
= public boolean isEmpty ();
« True iff Map holds no pairs
* Bulk methods
= public void putAll (Map<? extends K, ? extends V> otherMap);
* Puts all the mappings from otherMap into this map
= public void clear ();
* Removes all mappings
« Sets/Collections derived from a Map
= public Set<K> keySet ();
+ Returns a Set whose clements are the keys of this map
= public Collection<V> values ();

* Returns a Collection whose elements are all the values of this map

java.util.SortedMap<K,V> (an interface)

» Extends the Map contract: requires that keys are sorted

* The iterators for keySet(), values(), and entrySet() all
return items in order of the keys

* Methods (in addition to those inherited from Map):
= public Comparator<? super K> comparator ();

* Returns the comparator used to compare keys for this map; null is
returned if the natural order is being used

= public K firstKey ();

+ Returns the first (lowest value) key in this map
= public K lastKey ();

* Returns the last (highest value) key in this map

Set and SortedSet Implementations

* java.util.HashMap (a class; implements Map)
= Constructors
public HashMap ();
public HashMap (Map<? extends K, ? extends V> map);
public HashMap (int initialCapacity);
public HashMap (int initialCapacity, float loadFactor);
 java.util. TreeMap (a class; implements SortedMap)
= Constructors
public TreeMap ();
public TreeMap (Map<? extends K, ? extends V> map);
public TreeMap (Comparator<? super K> comp);

Efficiency & Some Comments

* Both TreeMap and » Both HashSet and TreeSet
HashMap are meant to be are actually implemented
accessed via keys by building a HashMap and

® get, put, containsKey, a TreeMap, respectively
remove are all fast
* O(1) expected time for

Given a Map that maps

The java.util. Arrays Utility Class

* Provides useful static methods « Methods sort and binarySearch
for dealing with arrays can use the natural order or there
= sort is a version of each that can use
+ Mostly uses QuickSort a Comparator

HashMap
* O(log n) worst-case time
for TreeMap
= containsValue is slow
* O(n) for both HashMap
and TreeMap

student ID number to
student name, print out a
list of students sorted by ID
number and another list
sorted by name (assume no
duplicate names)

+ Uses Mer,
Object]] (it’s s

® binarySearch * There is also a method for

= equals viewing an array as a List:

= fill

¢ These methods are overloaded
to work with
= arrays of each primitive type
= arrays of Objects

static List asList (Object[] a);
= Note that the resulting List is
backed by the array (i.e., changes
in the array are reflected in the List
and vice versa)

Unmodifiable Collections

+ Dangerous version:
public final String suits[] = { “Clubs”, “Diamonds”, “Hearts”, “Spades” };

« The final modifier means that suits always refers to the same array, but the array’s
elements can be changed
= suits[0] = “Leisure™;

« Safe version (it would be better really to use an Enum):
private final String theSuits[] = { “Clubs”, “Diamonds”, “Hearts”, “Spades” };
public final List suits = Collections.unmodifiableList(Arrays.asList(theSuits));

* The Collections class provides unmodifiable wrappers; any methods that would
modify the collection throw an UnsupportedOperationException
= unmodifiableCollection, unmodifiableSet, unmodifiableSortedSet,
unmodifiableList

= unmodifiableMap, unmodifiableSortedMap

The java.util.Collections Utilities

public static Object min (Collection c);
public static Object min (Collection ¢, Comparator comp);
public static Object max (Collection c);
public static Object max (Collection ¢, Comparator comp);

public static Comparator reverseOrder (); // Reverse of natural order
public static void reverse (List list); // Reverse the list

public static void shuffle (List list); // Randomly shuffle the list
public static void fill (List list, Object x); // List is filled with x’s
public static void sort (List list); / Sort using natural order

public static void sort (List list, Comparator comp);
public static void binarySearch (List list, Object key);
public static void binarySearch (List list, Object key, Comparator comp);

Summary

Arrays Collections
Map [~ [T |
asList min
put binarySearch max
get equals reverseOrder
containsKey fill reverse
containsValue sort shuffle
remove fill
size
isEmpty
putAll unmodifiableCollection
clear unmodifiableSet
keySet unmodifiableSortedSet
values unmodifiableList
entrySet SortedMap unmodifiableMap
T unmodifiableSortedMap
i
|

firstKey
lastKey

TreeMap ‘

Additional JCF Interfaces & Classes

* java.util. Queue<E> * java.util.PriorityQueue<E>
= An interface = Aclass
= Has peek() op = Heap-based PQ using table-
= Implemented by doubling
« LinkedList = Ordering is based on natural
« PriorityQueue order or on a Comparator

* To use a Comparator, it
must be specified in the
constructor

« Legacy classes = Implements Queue
= java.util.Hashtable
= java.util. Vector
= java.util.Stack

Odds & Ends

Hash Tables in Java

java.util. HashMap
java.util.HashSet

java.util.Hashtable (legacy) A node in each chain looks like
this:

¢ Use chaining

+ Initial (default) size = 101 hashCode

original hashCode (before mod m)
* Load factor =2, =0.75 [Allows faster rehashing and
(possibly) faster key comparison]

« Uses table doubling
(2*previous+1)

Hashing Application: Spell Checking

* We want to create a “spelling dictionary” containing

10,000 words

= A spelling query should be fast

= Should return true iff word is contained in dictionary

* Basic idea:

= Use a Hashtable consisting only of bits (say 100K bytes or about

800,000 bits)

bit in the table

Fix: Use more hash functions

Compute a hash value for each word and turn on the corresponding

What’s the probability of a false positive? (It’s too high!)

Linear & Quadratic Probing

« These are techniques in which all Quadratic Probing
data is stored directly within the

= Similar to Linear Probing in
hash table array

that data is stored within the

table
¢ Linear Probing = Probe at h(X), then at
= Probe at h(X), then at h(X)+1
hX) + 1 h(X)+4
g
h(X) +2 h(X)+9
h(X) +1i h(X)+i?
= Leads to primary clustering = Works well when
£ A<05
+ Long sequences of filled
cells table size is prime

Hash Table Pitfalls

= Good hash function is required

= Watch the load factor (A), especially for Linear &

Quadratic Probing

Example Balancing Scheme: 234-Trees

* Nodes have 2, 3, or 4 children (and contain 1, 2, or 3 keys, respectively)
« All leaves are at the same level
« Basic rule for insertion: We hate 4-nodes
= Split a 4-node whenever you find one while coming down the tree
= Note: this requires that parent is not a 4-node
« Delete is harder than insert
= For delete, we hate 2-nodes
= As in BSTs, cannot delete from a nonleaf so we use same BST trick: delete
successor and recopy its data

—

_—

.

234-Tree Analysis

* Time for insert or get is
proportional to tree’s
height

» How big is tree’s height /?

* Let n be the number of
nodes in a tree of height

= nis large if all nodes are 4-
nodes

= nis small if all nodes are 2-
nodes

 Can use this to show

An:

alysis of tree height:

Let N be the number of nodes, n be
the number of items, and / be the
height

Define 4 so that a tree consisting of
a single node is height 0

It’s easy to see 1+2+4+.. 420 <N <
1+4+16+...+4h

It’s also easy to see N <n <3N
Using the above, we have n >
14244+, +2h = 2ht1]

Rewriting, we have h < log(n+1) -
1or

Thus, Dictionary operations on
234-trees take time O(log n) in the
worst case

234-Tree Implementation

» Can implement all nodes as 4-nodes
= Wasted space

* Can allow various node sizes

= Requires recopying of data whenever a node changes
size

* Can use BST nodes to emulate 2-, 3-, or 4-nodes

Using BSTs to Emulate 234-Trees

¢ A 2-node can be
represented with a standard
BST node

A 4-node can be
represented with three BST
nodes

* A 3-node can be
represented with two BST
nodes (in two different
ways)

Red-Black Trees

* We need a way to tell when
an emulated 234-node
starts and ends

* We mark the nodes

= Black: “root” of 234-node
= Red: belongs to parent
= Requires one bit per node

¢ 234-tree rules become rules
for rotations and color
changes in red-black trees

* Result:

one black node per 234-
node

Number of black nodes on
path from root to leaf is
same as height of 234-tree

All paths from root to leaf
have same number of black
nodes

On any path: at most one red
node per black node

Thus tree height for red-
black tree is O(log n)

Balanced Tree Schemes

* AVL trees [1962]

= named for initials of Russian

creators
® uses rotations to ensure
heights of child trees differ
by at most 1
* 23-Trees [Hopcroft 1970]
= similar to 234-tree, but
repairs have to move back
up the tree
* B-Trees [Bayer &
McCreight 1972]

« Red-Black Trees [Bayer
1972]
= not the original name
¢ Red-black convention &
relation to 234-trees
[Guibas & Stolfi 1978]

« Splay Trees [Sleator &
Tarjan 1983]

« Skip Lists [Pugh 1990]
= developed at Cornell

Selecting a Dictionary Scheme

 Use an unordered array for
small sets (< 20 or s0)
« Use a Hash Table if possible
= Cannot efficiently do some ops
that are easy with BSTs
= Running times are expected
rather than worst-case
 Use an ordered array if few
changes after initialization
« B-Trees are best for large data
sets, external storage
= Widely used within data base
software

 Otherwise, Red-Black Trees
are current scheme of choice

« Skip Lists are supposed to be
easier to implement
= But shouldn’t have to
implement—use existing code
* Splay trees are useful if some
items are accessed more often
than others
= But if you know which items
are most-commonly accessed,
use a separate data structure

Selecting a Priority Queue Scheme

* Use an unordered array for

small sets (< 20 or so0)

* Use a sorted array or sorted
linked list if few insertions

are expected

* Use an array of linked lists

if there are few priorities

= Each linked list is a queue of

equal-priority items
= Very easy to implement
 Otherwise, use a Heap if
you can

* Heap + Hashtable
= Allow change-priority
operation to be done in
O(log n) expected time
« Balanced tree schemes
= Useful and practical
* There are a number of
alternate implementations
that allow additional
operations
= Skew heaps
= Pairing heaps
= Fibonacci heaps

