
1

ADTs & the Java
Collections
Framework

Lecture 18
CS211 – Fall 2005

Announcements

• Prelim 1 regrade requests are due today!

Recall: Useful ADTs
• Stack

Push/pop
O(1) worst-case time using
linked list

• Queue
Put/get
O(1) worst-case time using
linked list

• Priority Queue
Put/getMax
O(log n) worst-case time using
heap (if max heap-size is
known)
O(log n) expected time using
heap + table-doubling

• Set
Insert/remove/query
O(1) worst-case time using bit
vector (if universe is small)
O(1) expected time using hash-
table + table-doubling

• Dictionary
Insert/remove/update/find
O(1) expected time using hash-
table + table-doubling
O(log n) worst-case time using
balanced tree

Dictionary Implementations
• Ordered Array

Better than unordered array
because Binary Search can
be used

• Unordered Linked-List
Ordering doesn’t help

• Direct Address Table
Small universe ⇒ limited
usage

• Hashtables
O(1) expected time for
Dictionary operations

• Goal: Want guaranteed time-per-
operation

• Idea: Use a Binary Search Tree
(BST)

• BST Property:

X

< X > X

Deleting from a BST
Cases:
• Delete a leaf

easy

• Delete a node with just one
child

delete and replace with child

• Delete a node with two
children

delete node’s successor
write successor’s data into
node

• How do we find the
successor?

• The successor always has
at most one child. Why?

• Would work just as well
using predecessor instead
of successor

BST Performance
• Time for insert(), find(),

update(), remove() is O(h)
where h is the height of the
tree

• How bad can h be?

• Operations are fast if tree is
balanced

• How balanced is a random
tree?

If items are inserted in
random order then the
expected height of a BST is
O(log n) where n is the
number of items

• If deletion is allowed
Tree is no longer random
Tree is likely to become
unbalanced

2

Analysis Sketch for Random BST
• Only the number of items and their order is important

Can restrict our attention to BSTs containing items
{1,…, n}

• We assume that each item is equally likely to appear as the
root

• Define H(n) ≡ expected height of BST of size n
• If item i is the root then expected height is

1 + max { H(i-1), H(n-i) }
We average this over all possible i

• Can solve the resulting recurrence (by induction) to show
H(n) = O(log n)

Why use a BST instead of a Hashtable?
• If we use a balanced BST

scheme then we achieve
guaranteed worst-case time
bound of O(log n) for typical
Dictionary ops

• There are some operations that
can be efficient on BSTs, but
very inefficient on Hashtables

report-elements-in-order
getMin
getMax
select(k) // find the k-th element

(maintain size of each subtree by
using an additional size field in
each node)

• Note that balanced BST
schemes can be difficult to
implement

But there are lots of reliable
codes for these schemes
available on the Web
Java includes a balanced
BST scheme among its
standard packages
(java.util.TreeMap and
java.util.TreeSet)

Java Collections Framework Java Collections Framework
• Collections: holders that let

you store and organize
objects in useful ways for
efficient access

• Since Java 1.2, the package
java.util includes interfaces
and classes for a general
collection framework

• Goal: conciseness
A few concepts that are
broadly useful
Not an exhaustive set of
useful concepts

• Two types of concepts are
provided

Interfaces (i.e., ADTs)
Implementations

JCF Interfaces and Classes
• Interfaces

Collection
Set (no duplicates)
SortedSet
List (duplicates OK)

Map (i.e., Dictionary)
SortedMap

Iterator
Iterable
ListIterator

• Classes
HashSet
TreeSet
ArrayList
LinkedList

HashMap
TreeMap

java.util.Collection<E> (an interface)
• public int size();

Return number of elements in collection
• public boolean isEmpty();

Return true iff collection holds no elements
• public boolean add (Object x);

Make sure the collection includes x; returns true if collection has changed
(some collections allow duplicates, some don’t)

• public boolean contains (Object x);
Returns true iff collection contains x (uses equals() method)

• public boolean remove (Object x);
Removes a single instance of x from the collection; returns true if
collection has changed

• public Iterator<E> iterator ();
Returns an Iterator that steps through elements of collection

3

java.util.Iterator<E> (an interface)
• public boolean hasNext ();

Returns true if the iteration has more elements

• public E next ();
Returns the next element in the iteration
Throws NoSuchElementException if no next element

• public void remove ();
The element most-recently returned by next() is removed from the
collection
Throws IllegalStateException if next() not yet used or if remove()
already called
Throws UnsupportedOperationException if remove() not supported

Additional Methods of Collection
• public Object [] toArray ()

Returns a new array containing all the elements of this collection

• public <T> T[] toArray (T[] dest)
Returns an array containing all the elements of this collection; uses
dest as that array if it can

• Bulk Operations:
public boolean containsAll (Collection c);
public boolean addAll (Collection c);
public boolean removeAll (Collection c);
public boolean retainAll (Collection c);
public void clear ();

java.util.Set<E> (an interface)
• Set extends Collection

Set inherits all its methods
from Collection

• A Set contains no
duplicates

If you attempt to add() an
element twice then the
second add() will return
false (i.e., the Set has not
changed)

• Write a method that checks
if a given word is within a
Set of words

• Write a method that
removes all words longer
than 5 letters from a Set

• Write methods for the union
and intersection of two Sets

Set Implementations
• java.util.HashSet<E> (a hashtable)

Constructors
public HashSet ();
public HashSet (Collection c);
public HashSet (int initialCapacity);
public HashSet (int initialCapacity, float loadFactor);

• java.util.TreeSet (a balanced BST [red-black tree])
Constructors

public TreeSet ();
public TreeSet (Collection c);
…

java.util.SortedSet<E> (an interface)
• SortedSet extends Set
• For a SortedSet, the iterator() returns the elements in sorted

order

• Methods (in addition to those inherited from Set):
public E first ();

• Returns the first (lowest) object in this set
public E last ();

• Returns the last (highest) object in this set
public Comparator<? super E> comparator ();

• Returns the Comparator being used by this sorted set if there is one;
returns null if the natural order is being used

…

java.lang.Comparable<T> (an interface)

public int compareTo (T x);
Returns a value (< 0), (= 0), or (> 0)

• (< 0) implies this is before x
• (= 0) implies this.equals(x) is true
• (> 0) implies this is after x

• Many classes implement Comparable
String, Double, Integer, Char, java.util.Date,…
If a class implements Comparable then that is
considered to be the class’s natural ordering

4

java.util.Comparator<T> (an interface)

public int compare (T x1, T x2);
Returns a value (< 0), (= 0), or (> 0)

• (< 0) implies x1 is before x2
• (= 0) implies x1.equals(x2) is true
• (> 0) implies x1 is after x2

• Can often use a Comparator when a class’s natural order is
not the one you want

String.CASE_INSENSITIVE_ORDER is a predefined Comparator
java.util.Collections.reverseOrder() returns a Comparator that
reverses the natural order

SortedSet Implementations
• java.util.TreeSet<E>

This is the only class that implements SortedSet
TreeSet’s constructors

public TreeSet ();
public TreeSet (Collection<? extends E> c);
…

• Write a method that prints out a SortedSet of words
in order

• Write a method that prints out a Set of words in
order

java.util.List<E> (an interface)
• List extends Collection
• Items in a list can be accessed via their index (position in list)
• The add() method always puts an item at the end of the list
• The iterator() returns the elements in list-order
• Methods (in addition to those inherited from Collection):

public E get (int index);
• Returns the item at position index in the list

public E set (int index, E x);
• Places x at position index, replacing previous item; returns the previous item

public void add (int index, E x);
• Places x at position index, shifting items to make room

public E remove (int index);
• Remove item at position index, shifting items to fill the space; returns the

removed item
public int indexOf (Object x);

• Return the index of the first item in the list that equals x (x.equals())
…

List Implementations
• java.util.ArrayList<E> (an array; expands via array-

doubling)
Constructors

public ArrayList ();
public ArrayList (int initialCapacity);
public ArrayList (Collection<? extends E> c);

• java.util.LinkedList <E> (a doubly-linked list)
Constructors

public LinkedList ();
public LinkedList (Collection<? extends E> c);

• Both include some additional useful methods specific to
that class

Efficiency Depends on Implementation
• Object x = list.get(k);

O(1) time for ArrayList
O(k) time for LinkedList

• list.remove(0);
O(n) time for ArrayList
O(1) time for LinkedList

• If (set.contains(x))…
O(1) expected time for
HashSet
O(log n) for TreeSet

• Write a Stack class

• Write a Queue class

• Write a PriorityQueue class
that works on Comparable
objects

Summary
Collection

size
isEmpty
contains
iterator
toArray

add
remove

Set

SortedSet

comparator
first
last
…

List

get
set
add

remove
indexOf

…

HashSet

TreeSet

ArrayList

LinkedList

5

java.util.Map<K,V> (an interface)
• Map does not extend Collection
• A Map contains key/value pairs instead of individual elements
• Methods

public V put (K key, V value);
• Associates value with key in the map; returns the old value associated with

key or null if the key did not previously appear in the map
public V get (Object key);

• Returns the object to which this key is mapped or null if there is no such key
public boolean containsKey (Object key);

• True iff Map contains a pair using the given key
public boolean containsValue (Object value);

• True iff there is at least one pair with this value
public V remove (Object key);

• Removes any mapping for the key; returns old value associated with key if
there was one (null otherwise)

More Map Methods
• Other methods

public int size ();
• Return the number of key/value pairs in the Map

public boolean isEmpty ();
• True iff Map holds no pairs

• Bulk methods
public void putAll (Map<? extends K, ? extends V> otherMap);

• Puts all the mappings from otherMap into this map
public void clear ();

• Removes all mappings

• Sets/Collections derived from a Map
public Set<K> keySet ();

• Returns a Set whose elements are the keys of this map
public Collection<V> values ();

• Returns a Collection whose elements are all the values of this map

java.util.SortedMap<K,V> (an interface)
• Extends the Map contract: requires that keys are sorted
• The iterators for keySet(), values(), and entrySet() all

return items in order of the keys

• Methods (in addition to those inherited from Map):
public Comparator<? super K> comparator ();

• Returns the comparator used to compare keys for this map; null is
returned if the natural order is being used

public K firstKey ();
• Returns the first (lowest value) key in this map

public K lastKey ();
• Returns the last (highest value) key in this map

…

Set and SortedSet Implementations
• java.util.HashMap (a class; implements Map)

Constructors
public HashMap ();
public HashMap (Map<? extends K, ? extends V> map);
public HashMap (int initialCapacity);
public HashMap (int initialCapacity, float loadFactor);

• java.util.TreeMap (a class; implements SortedMap)
Constructors

public TreeMap ();
public TreeMap (Map<? extends K, ? extends V> map);
public TreeMap (Comparator<? super K> comp);
…

Efficiency & Some Comments
• Both TreeMap and

HashMap are meant to be
accessed via keys

get, put, containsKey,
remove are all fast

• O(1) expected time for
HashMap

• O(log n) worst-case time
for TreeMap

containsValue is slow
• O(n) for both HashMap

and TreeMap

• Both HashSet and TreeSet
are actually implemented
by building a HashMap and
a TreeMap, respectively

• Given a Map that maps
student ID number to
student name, print out a
list of students sorted by ID
number and another list
sorted by name (assume no
duplicate names)

The java.util.Arrays Utility Class
• Provides useful static methods

for dealing with arrays
sort

• Mostly uses QuickSort
• Uses MergeSort for

Object[] (it’s stable)
binarySearch
equals
fill

• These methods are overloaded
to work with

arrays of each primitive type
arrays of Objects

• Methods sort and binarySearch
can use the natural order or there
is a version of each that can use
a Comparator

• There is also a method for
viewing an array as a List:
static List asList (Object[] a);

Note that the resulting List is
backed by the array (i.e., changes
in the array are reflected in the List
and vice versa)

6

Unmodifiable Collections
• Dangerous version:
public final String suits[] = { “Clubs”, “Diamonds”, “Hearts”, “Spades” };

• The final modifier means that suits always refers to the same array, but the array’s
elements can be changed

suits[0] = “Leisure”;

• Safe version (it would be better really to use an Enum):
private final String theSuits[] = { “Clubs”, “Diamonds”, “Hearts”, “Spades” };
public final List suits = Collections.unmodifiableList(Arrays.asList(theSuits));

• The Collections class provides unmodifiable wrappers; any methods that would
modify the collection throw an UnsupportedOperationException

unmodifiableCollection, unmodifiableSet, unmodifiableSortedSet,
unmodifiableList
unmodifiableMap, unmodifiableSortedMap

The java.util.Collections Utilities
public static Object min (Collection c);
public static Object min (Collection c, Comparator comp);
public static Object max (Collection c);
public static Object max (Collection c, Comparator comp);

public static Comparator reverseOrder (); // Reverse of natural order

public static void reverse (List list); // Reverse the list
public static void shuffle (List list); // Randomly shuffle the list
public static void fill (List list, Object x); // List is filled with x’s

public static void sort (List list); // Sort using natural order
public static void sort (List list, Comparator comp);
public static void binarySearch (List list, Object key);
public static void binarySearch (List list, Object key, Comparator comp);
…

Summary

Map

put
get

containsKey
containsValue

remove
size

isEmpty
putAll
clear

keySet
values

entrySet SortedMap

comparator
firstKey
lastKey

HashMap

TreeMap

Arrays

asList
binarySearch

equals
fill
sort

Collections

min
max

reverseOrder
reverse
shuffle

fill
sort

binarySearch
unmodifiableCollection

unmodifiableSet
unmodifiableSortedSet

unmodifiableList
unmodifiableMap

unmodifiableSortedMap
…

Additional JCF Interfaces & Classes
• java.util.Queue<E>

An interface
Has peek() op
Implemented by

• LinkedList
• PriorityQueue

• Legacy classes
java.util.Hashtable
java.util.Vector
java.util.Stack

• java.util.PriorityQueue<E>
A class
Heap-based PQ using table-
doubling
Ordering is based on natural
order or on a Comparator

• To use a Comparator, it
must be specified in the
constructor

Implements Queue

Odds & Ends Hash Tables in Java
java.util.HashMap
java.util.HashSet
java.util.Hashtable (legacy)

• Use chaining

• Initial (default) size = 101

• Load factor = λ0 = 0.75

• Uses table doubling
(2∗previous+1)

A node in each chain looks like
this:

hashCode key value next

original hashCode (before mod m)
[Allows faster rehashing and
(possibly) faster key comparison]

7

Hashing Application: Spell Checking
• We want to create a “spelling dictionary” containing

10,000 words
A spelling query should be fast
Should return true iff word is contained in dictionary

• Basic idea:
Use a Hashtable consisting only of bits (say 100K bytes or about
800,000 bits)
Compute a hash value for each word and turn on the corresponding
bit in the table
What’s the probability of a false positive? (It’s too high!)
Fix: Use more hash functions

Linear & Quadratic Probing
• These are techniques in which all

data is stored directly within the
hash table array

• Linear Probing
Probe at h(X), then at

h(X) + 1
h(X) + 2
…
h(X) + i

Leads to primary clustering
• Long sequences of filled

cells

• Quadratic Probing
Similar to Linear Probing in
that data is stored within the
table
Probe at h(X), then at

h(X)+1
h(X)+4
h(X)+9
…
h(X)+ i2

Works well when
λ < 0.5
table size is prime

Hash Table Pitfalls

Good hash function is required

Watch the load factor (λ), especially for Linear &
Quadratic Probing

Example Balancing Scheme: 234-Trees

• Nodes have 2, 3, or 4 children (and contain 1, 2, or 3 keys, respectively)
• All leaves are at the same level
• Basic rule for insertion: We hate 4-nodes

Split a 4-node whenever you find one while coming down the tree
Note: this requires that parent is not a 4-node

• Delete is harder than insert
For delete, we hate 2-nodes
As in BSTs, cannot delete from a nonleaf so we use same BST trick: delete
successor and recopy its data

B

A C

Place in
parent

A B C

Splitting a 4-node

234-Tree Analysis
• Time for insert or get is

proportional to tree’s
height

• How big is tree’s height h?
• Let n be the number of

nodes in a tree of height h
n is large if all nodes are 4-
nodes
n is small if all nodes are 2-
nodes

• Can use this to show
h = O(log n)

Analysis of tree height:
• Let N be the number of nodes, n be

the number of items, and h be the
height

• Define h so that a tree consisting of
a single node is height 0

• It’s easy to see 1+2+4+…+2h ≤ N ≤
1+4+16+…+4h

• It’s also easy to see N ≤ n ≤ 3N
• Using the above, we have n ≥

1+2+4+…+2h = 2h+1-1
• Rewriting, we have h ≤ log(n+1) -

1 or h = O(log n)
• Thus, Dictionary operations on

234-trees take time O(log n) in the
worst case

234-Tree Implementation
• Can implement all nodes as 4-nodes

Wasted space

• Can allow various node sizes
Requires recopying of data whenever a node changes
size

• Can use BST nodes to emulate 2-, 3-, or 4-nodes

8

Using BSTs to Emulate 234-Trees
• A 2-node can be

represented with a standard
BST node

• A 4-node can be
represented with three BST
nodes

• A 3-node can be
represented with two BST
nodes (in two different
ways)

A B C

CA

B
4-node

A

B

B

A3-node

or
A B

Red-Black Trees
• We need a way to tell when

an emulated 234-node
starts and ends

• We mark the nodes
Black: “root” of 234-node
Red: belongs to parent
Requires one bit per node

• 234-tree rules become rules
for rotations and color
changes in red-black trees

• Result:
one black node per 234-
node
Number of black nodes on
path from root to leaf is
same as height of 234-tree
All paths from root to leaf
have same number of black
nodes
On any path: at most one red
node per black node
Thus tree height for red-
black tree is O(log n)

Balanced Tree Schemes
• AVL trees [1962]

named for initials of Russian
creators
uses rotations to ensure
heights of child trees differ
by at most 1

• 23-Trees [Hopcroft 1970]
similar to 234-tree, but
repairs have to move back
up the tree

• B-Trees [Bayer &
McCreight 1972]

• Red-Black Trees [Bayer
1972]

not the original name

• Red-black convention &
relation to 234-trees
[Guibas & Stolfi 1978]

• Splay Trees [Sleator &
Tarjan 1983]

• Skip Lists [Pugh 1990]
developed at Cornell

Selecting a Dictionary Scheme
• Use an unordered array for

small sets (< 20 or so)
• Use a Hash Table if possible

Cannot efficiently do some ops
that are easy with BSTs
Running times are expected
rather than worst-case

• Use an ordered array if few
changes after initialization

• B-Trees are best for large data
sets, external storage

Widely used within data base
software

• Otherwise, Red-Black Trees
are current scheme of choice

• Skip Lists are supposed to be
easier to implement

But shouldn’t have to
implement—use existing code

• Splay trees are useful if some
items are accessed more often
than others

But if you know which items
are most-commonly accessed,
use a separate data structure

Selecting a Priority Queue Scheme
• Use an unordered array for

small sets (< 20 or so)
• Use a sorted array or sorted

linked list if few insertions
are expected

• Use an array of linked lists
if there are few priorities

Each linked list is a queue of
equal-priority items
Very easy to implement

• Otherwise, use a Heap if
you can

• Heap + Hashtable
Allow change-priority
operation to be done in
O(log n) expected time

• Balanced tree schemes
Useful and practical

• There are a number of
alternate implementations
that allow additional
operations

Skew heaps
Pairing heaps
Fibonacci heaps
…

