
1

More on ADTs: 
Priority Queues & 

Dictionaries

Lecture 17
CS211 – Fall 2005

Announcements

• Assignment 5 is online (since Friday)
Due Wednesday, Nov 2
Multiple small tasks

Heaps
• A heap is a tree that

Has a particular shape (we’ll 
come back to this) and
Has the heap property

• Heap property
Each node’s value (its 
priority) is ≤ the value of its 
parent
This version is for a max-
heap (max value at the root)

• There is a similar heap 
property for a min-heap 
(min at the root)
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Has heap property

Does not have 
heap property

Heap Implementation (the Big Trick)

• Can avoid using pointers!
• Use a complete binary tree 

stored in an array
Definition: Complete means 
that each level of the tree is 
filled except possibly the 
last, which is filled from left 
to right

• For A[i]
left child = 2 * i
right child = 2 * i + 1
parent = i / 2

A[i]

A[2∗i] A[2∗i+1]

Insert and GetMax Pseudocode
insert (Item):

Place item in a leaf (= next empty position in array);
while (item > parent) {Swap item with parent;} // BubbleUp

getMax ():
max = root.value;
Swap root and last item (call it v) in heap; // Ensures same shape for heap
Decrease heap size by 1 (i.e., access less of the array);
while (v < one of its children) // BubbleDown

{Swap v with its largest child;}
return max;

To Build a Heap
• How long to construct a 

heap, given the items?
• Worst-case time for insert() 

is O(log n)
• Total time to build heap 

using insert() is
O(log 1) + O(log 2) + ... + O(log n)

or O(n log n)

Can we do better?

• We had two heap-fixing 
methods

bubbleUp: move up the tree as 
long as we’re > our parent

bubbleDown: move down the 
tree as long as we’re < one 
of our children

• If we build the heap from 
the bottom-up using 
bubbleDown then we can 
build it in time O(n) 
(Wow!)
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Efficient Heap Building
• Build from the bottom-up
• If there are n items in the 

heap then...
There are about n/2 mini-
heaps of height 1
There are about n/4 mini-
heaps of height 2
There are about n/8 mini-
heaps of height 3 and so on

• The time to fix up a mini-
heap is O(its height)

• Total time spent fixing 
heaps is thus bounded by

n/2 + 2n/4 + 3n/8 + ....

• This can be rewritten as
n(1/2 + 2/4 + ... + i/2i + ...)

= n(2)

• Thus total heap-building 
time (using the bottom-up 
method) is O(n)

HeapSort

• Given a Comparable[ ] array of length n,

Put all n elements into a heap: O(n) or O(n log n)
Repeatedly get the min: O(n log n)

public static void heapSort(Comparable[] a) {
PriorityQueue<Comparable> pq = new PQ<Comparable>();
for (Comparable x : a) { pq.put(x); }
for (int i = 0; i < a.length; i++) { a[i] = pq.get(); }

}

PQ Application: Simulation
• Example: Given a 

probabilistic model of 
bank-customer arrival 
times and transaction 
times, how many tellers are 
needed

Assume we have a way to 
generate random inter-
arrival times
Assume we have a way to 
generate transaction times
Can simulate the bank to get 
some idea of how long 
customers must wait

Time-Driven Simulation
• Check at each tick to see if 

any event occurs

Event-Driven Simulation
• Advance clock to next 

event, skipping intervening 
ticks

• This uses a PQ!

Another PQ Implementation
• If there are only a few 

possible priorities then can 
use an array of queues

Each array position 
represents a priority (0..m-1 
where m is the array size)
Each queue holds all items 
that have that priority

• One text [Skiena] calls this 
a bounded height priority 
queue

• Time for insert: O(1)
• Time for getMax: 

O(m) in the worst-case
Generally, faster

• Example: airline check-in

m-1

0
1

Other PQ Operations
delete

a particular item

update
an item (change its 
priority)

join
two priority queues

• For delete and update, we 
need to be able to find the 
item

One way to do this: Use a 
Dictionary to keep track of 
the item’s position in the 
heap

• Efficient joining of 2 
Priority Queues requires 
another data structure

Skew Heaps or Pairing 
Heaps (Chapter 23 in text)

Recall: Sets & Dictionaries
• ADT Set

Operations:
void insert (Object element);
boolean contains (Object element);
void remove (Object element);
boolean isEmpty ( );
void makeEmpty ( );

Note: no duplicates allowed
• A “set” with duplicates is 

usually called a bag

• Where used:
Wide use within other 
algorithms

• ADT Dictionary
Operations:

void insert (Object key, Object value);
void update (Object key, Object value);
Object find (Object key);
void remove (Object key);
boolean isEmpty ( );
void makeEmpty ( );

Think of 
key = word; value = definition

• Where used:
Symbol tables
Wide use within other 
algorithms



3

Implementing Sets
• Recall: ADT Set

Operations:
void insert (Object element);
boolean contains (Object element);
void remove (Object element);
boolean isEmpty ( );
void makeEmpty ( );

• Can use a Dictionary
Values in (key, value) pairs 
are ignored
All operations are expected 
time O(1) using hash table 
(see next several slides)

• If the universe is not too 
large

Can use a table of bits (i.e., 
a bit-vector)

• We need n bits for a 
universe of size n

This implementation also 
allows for fast union, 
intersection, and 
complement

Goal: Design a Dictionary
• Operations

void insert (key,value)
void update (key, value)
Object find (key)
void remove (key)

Array implementation:
Uses an array of (key,value) 
pairs

Unsorted Sorted
insert O(1) O(n)
update O(n) O(log n)
find O(n) O(log n)
remove O(n) O(n)

n is the number of items 
currently held in the array

Direct Address Table
• Assumes the key set is from a small Universe
• Example: Addresses on my street

Start at 1, go to 40
A few lots don’t have houses

• For a Direct Address Table, we make an array as 
large as the Universe

• To find an entry, we just index to that entry of the 
array

• Dictionary operations all take O(1) time

What if the Universe is large?
• Idea is to re-use table 

entries via a hash function
h

• h: U → [0,…,m-1]
where m = table size

• h must
Be easy to compute
Cause few collisions
Have equal probability for 
each table position

Typical situation:
U = all legal identifiers

Typical hash function:
h converts each letter to a 

number and we compute a 
function of these numbers

A Hashing Example
• Suppose each word below 

has the following hashCode
jan 7
feb 0
mar 5
apr 2
may 4
jun 7
jul 3
aug 7
sep 2
oct 5

• How do we resolve 
collisions?

We’ll use chaining: each 
table position is the head of 
a list
For any particular problem, 
this might work terribly

• In practice, using a good 
hash function, we can 
assume each position is 
equally likely

Analysis for Hashing with Chaining
• Analyzed in terms of load 

factor λ = n/m = 
(items in table)/(table size)

• We count the expected 
number of probes (key 
comparisons)

• Goal: Determine U = 
number of probes for an 
unsuccessful search

• Claim U is the same as the 
average number of items 
per table position = n/m = 
λ

• Claim S = number of 
probes for a successful
search = 1 + λ/2
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Table Doubling
• We know each operation 

takes time O(λ) where 
λ=n/m

• But isn’t λ = Θ(n)?

• What’s the deal here?  It’s 
still linear time!

Table Doubling:
• Set a bound for λ (call it 

λ0)
• Whenever λ reaches this 

bound we
Create a new table, twice as 
big and
Re-insert all the data

• Easy to see operations 
usually take time O(1)

But sometimes we copy the 
whole table

Analysis of Table Doubling
• Suppose we 

reach a state 
with n items in 
a table of size 
m and that we 
have just 
completed a 
table doubling

Copying Work

Everything has just
been copied

n inserts

Half were copied
previously

n/2 inserts

Half of those were
copied previously

n/4 inserts

… …
Total work n + n/2 + n/4 + … = 2n

Analysis of Table Doubling, Cont’d
• Total number of insert operations 

needed to reach current table = 
copying work + initial insertions 
of items
= 2n + n = 3n inserts

• Each insert takes expected time 
O(λ0) or O(1), so total expected 
time to build entire table is O(n)

• Thus, expected time per 
operation is O(1)

• Disadvantages of table doubling:

Worst-case insertion time of 
O(n) is definitely achieved (but 
rarely)

Thus, not appropriate for time 
critical operations

Java Hash Functions
• Most Java classes implement 

the hashCode() method

• hashCode() returns an int

• Java’s HashMap class uses 
h(X) = X.hashCode() mod m

• h(X) in detail:
int hash = X.hashCode();
int index = (hash & 0x7FFFFFFF) % m;

What hashCode() returns:
Integer: uses the int value
Float: converts to a bit 

representation and treats it 
as an int

Short Strings: 37∗previous + 
value of next character

Long Strings: sample of 8 
characters; 39∗previous + 
next value

hashCode( ) Requirements

Contract for hashCode() method:
• Whenever it is invoked in the same object, it must return the 

same result
• Two objects that are equal must have the same hash code
• Two objects that are not equal should return different hash 

codes, but are not required to do so

Hash Tables in Java
java.util.HashMap
java.util.HashSet
java.util.Hashtable (legacy)

• Use chaining

• Initial (default) size = 101

• Load factor = λ0 = 0.75

• Uses table doubling 
(2∗previous+1)

A node in each chain looks like 
this:

hashCode key value next

original hashCode (before mod m)
[Allows faster rehashing and
(possibly) faster key comparison]



5

Hashing Application: Spell Checking
• We want to create a “spelling dictionary” containing 

10,000 words
A spelling query should be fast
Should return true iff word is contained in dictionary

• Basic idea:
Use a Hashtable consisting only of bits (say 100K bytes or about
800,000 bits)
Compute a hash value for each word and turn on the corresponding
bit in the table
What’s the probability of a false positive?  (It’s too high!)
Fix: Use more hash functions

Linear & Quadratic Probing
• These are techniques in which all 

data is stored directly within the 
hash table array

• Linear Probing
Probe at h(X), then at

h(X) + 1
h(X) + 2
…
h(X) + i

Leads to primary clustering
• Long sequences of filled 

cells

• Quadratic Probing
Similar to Linear Probing in 
that data is stored within the 
table
Probe at h(X), then at

h(X)+1
h(X)+4
h(X)+9
…
h(X)+ i2

Works well when
λ < 0.5
table size is prime

Hash Table Pitfalls

Good hash function is required

Watch the load factor (λ), especially for Linear & 
Quadratic Probing

Dictionary Implementations
• Ordered Array

Better than unordered array 
because Binary Search can 
be used

• Unordered Linked-List
Ordering doesn’t help

• Direct Address Table
Small universe ⇒ limited 
usage

• Hashtables
O(1) expected time for 
Dictionary operations

• Goal: Want ability to report-in-
order, but can’t afford 
inefficiency of ordered array

• Idea: Use a Binary Search Tree 
(BST)

• BST Property:

X

< X > X

Deleting from a BST
Cases:
• Delete a leaf 

easy

• Delete a node with just one 
child

delete and replace with child

• Delete a node with two 
children

delete node’s successor
write successor’s data into 
node

• How do we find the 
successor?

• The successor always has 
at most one child.  Why? 

• Would work just as well 
using predecessor instead 
of successor

BST Performance
• Time for insert(), find(), 

update(), remove() is O(h) 
where h is the height of the 
tree

• How bad can h be?

• Operations are fast if tree is 
balanced

• How balanced is a random 
tree?

If items are inserted in 
random order then the 
expected height of a BST is 
O(log n) where n is the 
number of items

• If deletion is allowed
Tree is no longer random
Tree is likely to become 
unbalanced
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Analysis Sketch for Random BST
• Only the number of items and their order is important

Can restrict our attention to BSTs containing items 
{1,…, n}

• We assume that each item is equally likely to appear as the 
root

• Define H(n) ≡ expected height of BST of size n
• If item i is the root then expected height is

1 + max { H(i-1), H(n-i) }
We average this over all possible i

• Can solve the resulting recurrence (by induction) to show
H(n) = O(log n)

Why use a BST instead of a Hashtable?
• If we use a balanced BST 

scheme then we achieve 
guaranteed worst-case time 
bound of O(log n) for typical 
Dictionary ops

• There are some operations that 
can be efficient on BSTs, but 
very inefficient on Hashtables

report-elements-in-order 
getMin
getMax
select(k) // find the k-th element

(maintain size of each subtree by 
using an additional size field in 
each node)

• Note that balanced BST 
schemes can be difficult to 
implement

But there are lots of reliable 
codes for these schemes 
available on the Web
Java includes a balanced 
BST scheme among its 
standard packages 
(java.util.TreeMap and 
java.util.TreeSet)

Example Balancing Scheme: 234-Trees

• Nodes have 2, 3, or 4 children (and contain 1, 2, or 3 keys, respectively) 
• All leaves are at the same level
• Basic rule for insertion: We hate 4-nodes

Split a 4-node whenever you find one while coming down the tree
Note: this requires that parent is not a 4-node

• Delete is harder than insert
For delete, we hate 2-nodes
As in BSTs, cannot delete from a nonleaf so we use same BST trick: delete 
successor and recopy its data

B

A C

Place in
parent

A    B    C

Splitting a 4-node

234-Tree Analysis
• Time for insert or get is 

proportional to tree’s 
height 

• How big is tree’s height h?
• Let n be the number of 

nodes in a tree of height h
n is large if all nodes are 4-
nodes
n is small if all nodes are 2-
nodes

• Can use this to show
h = O(log n)

Analysis of tree height:
• Let N be the number of nodes, n be 

the number of items, and h be the 
height 

• Define h so that a tree consisting of 
a single node is height 0

• It’s easy to see 1+2+4+…+2h ≤ N ≤
1+4+16+…+4h

• It’s also easy to see N ≤ n ≤ 3N
• Using the above, we have n ≥

1+2+4+…+2h = 2h+1-1
• Rewriting, we have h ≤ log(n+1) -

1 or h = O(log n)
• Thus, Dictionary operations on 

234-trees take time O(log n) in the 
worst case

234-Tree Implementation
• Can implement all nodes as 4-nodes

Wasted space

• Can allow various node sizes
Requires recopying of data whenever a node changes 
size

• Can use BST nodes to emulate 2-, 3-, or 4-nodes

Using BSTs to Emulate 234-Trees
• A 2-node can be 

represented with a standard 
BST node

• A 4-node can be 
represented with three BST 
nodes

• A 3-node can be 
represented with two BST 
nodes (in two different 
ways)

A    B    C

CA

B
4-node

A

B

B

A3-node

or
A    B
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Red-Black Trees
• We need a way to tell when 

an emulated 234-node 
starts and ends

• We mark the nodes
Black: “root” of 234-node
Red: belongs to parent
Requires one bit per node

• 234-tree rules become rules 
for rotations and color 
changes in red-black trees

• Result:
one black node per 234-
node
Number of black nodes on 
path from root to leaf is 
same as height of 234-tree
All paths from root to leaf 
have same number of black 
nodes
On any path: at most one red 
node per black node
Thus tree height for red-
black tree is O(log n)

Balanced Tree Schemes
• AVL trees [1962]

named for initials of Russian 
creators
uses rotations to ensure 
heights of child trees differ 
by at most 1

• 23-Trees [Hopcroft 1970]
similar to 234-tree, but 
repairs have to move back 
up the tree

• B-Trees [Bayer & 
McCreight 1972]

• Red-Black Trees [Bayer 
1972]

not the original name 

• Red-black convention & 
relation to 234-trees 
[Guibas & Stolfi 1978]

• Splay Trees [Sleator & 
Tarjan 1983]

• Skip Lists [Pugh 1990]
developed at Cornell

Selecting a Dictionary Scheme
• Use an unordered array for 

small sets (< 20 or so)
• Use a Hash Table if possible

Cannot efficiently do some ops 
that are easy with BSTs
Running times are expected 
rather than worst-case

• Use an ordered array if few 
changes after initialization

• B-Trees are best for large data 
sets, external storage

Widely used within data base 
software

• Otherwise, Red-Black Trees 
are current scheme of choice

• Skip Lists are supposed to be 
easier to implement

But shouldn’t have to 
implement—use existing code

• Splay trees are useful if some 
items are accessed more often 
than others

But if you know which items 
are most-commonly accessed, 
use a separate data structure

Selecting a Priority Queue Scheme
• Use an unordered array for 

small sets (< 20 or so)
• Use a sorted array or sorted 

linked list if few insertions 
are expected

• Use an array of linked lists 
if there are few priorities

Each linked list is a queue of 
equal-priority items
Very easy to implement

• Otherwise, use a Heap if 
you can

• Heap + Hashtable
Allow change-priority
operation to be done in 
O(log n) expected time

• Balanced tree schemes 
Useful and practical

• There are a number of 
alternate implementations 
that allow additional 
operations

Skew heaps
Pairing heaps
Fibonacci heaps
…


