
1

More on ADTs:
Priority Queues &

Dictionaries

Lecture 17
CS211 – Fall 2005

Announcements

• Assignment 5 is online (since Friday)
Due Wednesday, Nov 2
Multiple small tasks

Heaps
• A heap is a tree that

Has a particular shape (we’ll
come back to this) and
Has the heap property

• Heap property
Each node’s value (its
priority) is ≤ the value of its
parent
This version is for a max-
heap (max value at the root)

• There is a similar heap
property for a min-heap
(min at the root)

41

15

20

27

33

22

10

41

15

20

33

27

22

10

Has heap property

Does not have
heap property

Heap Implementation (the Big Trick)

• Can avoid using pointers!
• Use a complete binary tree

stored in an array
Definition: Complete means
that each level of the tree is
filled except possibly the
last, which is filled from left
to right

• For A[i]
left child = 2 * i
right child = 2 * i + 1
parent = i / 2

A[i]

A[2∗i] A[2∗i+1]

Insert and GetMax Pseudocode
insert (Item):

Place item in a leaf (= next empty position in array);
while (item > parent) {Swap item with parent;} // BubbleUp

getMax ():
max = root.value;
Swap root and last item (call it v) in heap; // Ensures same shape for heap
Decrease heap size by 1 (i.e., access less of the array);
while (v < one of its children) // BubbleDown

{Swap v with its largest child;}
return max;

To Build a Heap
• How long to construct a

heap, given the items?
• Worst-case time for insert()

is O(log n)
• Total time to build heap

using insert() is
O(log 1) + O(log 2) + ... + O(log n)

or O(n log n)

Can we do better?

• We had two heap-fixing
methods

bubbleUp: move up the tree as
long as we’re > our parent

bubbleDown: move down the
tree as long as we’re < one
of our children

• If we build the heap from
the bottom-up using
bubbleDown then we can
build it in time O(n)
(Wow!)

2

Efficient Heap Building
• Build from the bottom-up
• If there are n items in the

heap then...
There are about n/2 mini-
heaps of height 1
There are about n/4 mini-
heaps of height 2
There are about n/8 mini-
heaps of height 3 and so on

• The time to fix up a mini-
heap is O(its height)

• Total time spent fixing
heaps is thus bounded by

n/2 + 2n/4 + 3n/8 +

• This can be rewritten as
n(1/2 + 2/4 + ... + i/2i + ...)

= n(2)

• Thus total heap-building
time (using the bottom-up
method) is O(n)

HeapSort

• Given a Comparable[] array of length n,

Put all n elements into a heap: O(n) or O(n log n)
Repeatedly get the min: O(n log n)

public static void heapSort(Comparable[] a) {
PriorityQueue<Comparable> pq = new PQ<Comparable>();
for (Comparable x : a) { pq.put(x); }
for (int i = 0; i < a.length; i++) { a[i] = pq.get(); }

}

PQ Application: Simulation
• Example: Given a

probabilistic model of
bank-customer arrival
times and transaction
times, how many tellers are
needed

Assume we have a way to
generate random inter-
arrival times
Assume we have a way to
generate transaction times
Can simulate the bank to get
some idea of how long
customers must wait

Time-Driven Simulation
• Check at each tick to see if

any event occurs

Event-Driven Simulation
• Advance clock to next

event, skipping intervening
ticks

• This uses a PQ!

Another PQ Implementation
• If there are only a few

possible priorities then can
use an array of queues

Each array position
represents a priority (0..m-1
where m is the array size)
Each queue holds all items
that have that priority

• One text [Skiena] calls this
a bounded height priority
queue

• Time for insert: O(1)
• Time for getMax:

O(m) in the worst-case
Generally, faster

• Example: airline check-in

m-1

0
1

Other PQ Operations
delete

a particular item

update
an item (change its
priority)

join
two priority queues

• For delete and update, we
need to be able to find the
item

One way to do this: Use a
Dictionary to keep track of
the item’s position in the
heap

• Efficient joining of 2
Priority Queues requires
another data structure

Skew Heaps or Pairing
Heaps (Chapter 23 in text)

Recall: Sets & Dictionaries
• ADT Set

Operations:
void insert (Object element);
boolean contains (Object element);
void remove (Object element);
boolean isEmpty ();
void makeEmpty ();

Note: no duplicates allowed
• A “set” with duplicates is

usually called a bag

• Where used:
Wide use within other
algorithms

• ADT Dictionary
Operations:

void insert (Object key, Object value);
void update (Object key, Object value);
Object find (Object key);
void remove (Object key);
boolean isEmpty ();
void makeEmpty ();

Think of
key = word; value = definition

• Where used:
Symbol tables
Wide use within other
algorithms

3

Implementing Sets
• Recall: ADT Set

Operations:
void insert (Object element);
boolean contains (Object element);
void remove (Object element);
boolean isEmpty ();
void makeEmpty ();

• Can use a Dictionary
Values in (key, value) pairs
are ignored
All operations are expected
time O(1) using hash table
(see next several slides)

• If the universe is not too
large

Can use a table of bits (i.e.,
a bit-vector)

• We need n bits for a
universe of size n

This implementation also
allows for fast union,
intersection, and
complement

Goal: Design a Dictionary
• Operations

void insert (key,value)
void update (key, value)
Object find (key)
void remove (key)

Array implementation:
Uses an array of (key,value)
pairs

Unsorted Sorted
insert O(1) O(n)
update O(n) O(log n)
find O(n) O(log n)
remove O(n) O(n)

n is the number of items
currently held in the array

Direct Address Table
• Assumes the key set is from a small Universe
• Example: Addresses on my street

Start at 1, go to 40
A few lots don’t have houses

• For a Direct Address Table, we make an array as
large as the Universe

• To find an entry, we just index to that entry of the
array

• Dictionary operations all take O(1) time

What if the Universe is large?
• Idea is to re-use table

entries via a hash function
h

• h: U → [0,…,m-1]
where m = table size

• h must
Be easy to compute
Cause few collisions
Have equal probability for
each table position

Typical situation:
U = all legal identifiers

Typical hash function:
h converts each letter to a

number and we compute a
function of these numbers

A Hashing Example
• Suppose each word below

has the following hashCode
jan 7
feb 0
mar 5
apr 2
may 4
jun 7
jul 3
aug 7
sep 2
oct 5

• How do we resolve
collisions?

We’ll use chaining: each
table position is the head of
a list
For any particular problem,
this might work terribly

• In practice, using a good
hash function, we can
assume each position is
equally likely

Analysis for Hashing with Chaining
• Analyzed in terms of load

factor λ = n/m =
(items in table)/(table size)

• We count the expected
number of probes (key
comparisons)

• Goal: Determine U =
number of probes for an
unsuccessful search

• Claim U is the same as the
average number of items
per table position = n/m =
λ

• Claim S = number of
probes for a successful
search = 1 + λ/2

4

Table Doubling
• We know each operation

takes time O(λ) where
λ=n/m

• But isn’t λ = Θ(n)?

• What’s the deal here? It’s
still linear time!

Table Doubling:
• Set a bound for λ (call it

λ0)
• Whenever λ reaches this

bound we
Create a new table, twice as
big and
Re-insert all the data

• Easy to see operations
usually take time O(1)

But sometimes we copy the
whole table

Analysis of Table Doubling
• Suppose we

reach a state
with n items in
a table of size
m and that we
have just
completed a
table doubling

Copying Work

Everything has just
been copied

n inserts

Half were copied
previously

n/2 inserts

Half of those were
copied previously

n/4 inserts

… …
Total work n + n/2 + n/4 + … = 2n

Analysis of Table Doubling, Cont’d
• Total number of insert operations

needed to reach current table =
copying work + initial insertions
of items
= 2n + n = 3n inserts

• Each insert takes expected time
O(λ0) or O(1), so total expected
time to build entire table is O(n)

• Thus, expected time per
operation is O(1)

• Disadvantages of table doubling:

Worst-case insertion time of
O(n) is definitely achieved (but
rarely)

Thus, not appropriate for time
critical operations

Java Hash Functions
• Most Java classes implement

the hashCode() method

• hashCode() returns an int

• Java’s HashMap class uses
h(X) = X.hashCode() mod m

• h(X) in detail:
int hash = X.hashCode();
int index = (hash & 0x7FFFFFFF) % m;

What hashCode() returns:
Integer: uses the int value
Float: converts to a bit

representation and treats it
as an int

Short Strings: 37∗previous +
value of next character

Long Strings: sample of 8
characters; 39∗previous +
next value

hashCode() Requirements

Contract for hashCode() method:
• Whenever it is invoked in the same object, it must return the

same result
• Two objects that are equal must have the same hash code
• Two objects that are not equal should return different hash

codes, but are not required to do so

Hash Tables in Java
java.util.HashMap
java.util.HashSet
java.util.Hashtable (legacy)

• Use chaining

• Initial (default) size = 101

• Load factor = λ0 = 0.75

• Uses table doubling
(2∗previous+1)

A node in each chain looks like
this:

hashCode key value next

original hashCode (before mod m)
[Allows faster rehashing and
(possibly) faster key comparison]

5

Hashing Application: Spell Checking
• We want to create a “spelling dictionary” containing

10,000 words
A spelling query should be fast
Should return true iff word is contained in dictionary

• Basic idea:
Use a Hashtable consisting only of bits (say 100K bytes or about
800,000 bits)
Compute a hash value for each word and turn on the corresponding
bit in the table
What’s the probability of a false positive? (It’s too high!)
Fix: Use more hash functions

Linear & Quadratic Probing
• These are techniques in which all

data is stored directly within the
hash table array

• Linear Probing
Probe at h(X), then at

h(X) + 1
h(X) + 2
…
h(X) + i

Leads to primary clustering
• Long sequences of filled

cells

• Quadratic Probing
Similar to Linear Probing in
that data is stored within the
table
Probe at h(X), then at

h(X)+1
h(X)+4
h(X)+9
…
h(X)+ i2

Works well when
λ < 0.5
table size is prime

Hash Table Pitfalls

Good hash function is required

Watch the load factor (λ), especially for Linear &
Quadratic Probing

Dictionary Implementations
• Ordered Array

Better than unordered array
because Binary Search can
be used

• Unordered Linked-List
Ordering doesn’t help

• Direct Address Table
Small universe ⇒ limited
usage

• Hashtables
O(1) expected time for
Dictionary operations

• Goal: Want ability to report-in-
order, but can’t afford
inefficiency of ordered array

• Idea: Use a Binary Search Tree
(BST)

• BST Property:

X

< X > X

Deleting from a BST
Cases:
• Delete a leaf

easy

• Delete a node with just one
child

delete and replace with child

• Delete a node with two
children

delete node’s successor
write successor’s data into
node

• How do we find the
successor?

• The successor always has
at most one child. Why?

• Would work just as well
using predecessor instead
of successor

BST Performance
• Time for insert(), find(),

update(), remove() is O(h)
where h is the height of the
tree

• How bad can h be?

• Operations are fast if tree is
balanced

• How balanced is a random
tree?

If items are inserted in
random order then the
expected height of a BST is
O(log n) where n is the
number of items

• If deletion is allowed
Tree is no longer random
Tree is likely to become
unbalanced

6

Analysis Sketch for Random BST
• Only the number of items and their order is important

Can restrict our attention to BSTs containing items
{1,…, n}

• We assume that each item is equally likely to appear as the
root

• Define H(n) ≡ expected height of BST of size n
• If item i is the root then expected height is

1 + max { H(i-1), H(n-i) }
We average this over all possible i

• Can solve the resulting recurrence (by induction) to show
H(n) = O(log n)

Why use a BST instead of a Hashtable?
• If we use a balanced BST

scheme then we achieve
guaranteed worst-case time
bound of O(log n) for typical
Dictionary ops

• There are some operations that
can be efficient on BSTs, but
very inefficient on Hashtables

report-elements-in-order
getMin
getMax
select(k) // find the k-th element

(maintain size of each subtree by
using an additional size field in
each node)

• Note that balanced BST
schemes can be difficult to
implement

But there are lots of reliable
codes for these schemes
available on the Web
Java includes a balanced
BST scheme among its
standard packages
(java.util.TreeMap and
java.util.TreeSet)

Example Balancing Scheme: 234-Trees

• Nodes have 2, 3, or 4 children (and contain 1, 2, or 3 keys, respectively)
• All leaves are at the same level
• Basic rule for insertion: We hate 4-nodes

Split a 4-node whenever you find one while coming down the tree
Note: this requires that parent is not a 4-node

• Delete is harder than insert
For delete, we hate 2-nodes
As in BSTs, cannot delete from a nonleaf so we use same BST trick: delete
successor and recopy its data

B

A C

Place in
parent

A B C

Splitting a 4-node

234-Tree Analysis
• Time for insert or get is

proportional to tree’s
height

• How big is tree’s height h?
• Let n be the number of

nodes in a tree of height h
n is large if all nodes are 4-
nodes
n is small if all nodes are 2-
nodes

• Can use this to show
h = O(log n)

Analysis of tree height:
• Let N be the number of nodes, n be

the number of items, and h be the
height

• Define h so that a tree consisting of
a single node is height 0

• It’s easy to see 1+2+4+…+2h ≤ N ≤
1+4+16+…+4h

• It’s also easy to see N ≤ n ≤ 3N
• Using the above, we have n ≥

1+2+4+…+2h = 2h+1-1
• Rewriting, we have h ≤ log(n+1) -

1 or h = O(log n)
• Thus, Dictionary operations on

234-trees take time O(log n) in the
worst case

234-Tree Implementation
• Can implement all nodes as 4-nodes

Wasted space

• Can allow various node sizes
Requires recopying of data whenever a node changes
size

• Can use BST nodes to emulate 2-, 3-, or 4-nodes

Using BSTs to Emulate 234-Trees
• A 2-node can be

represented with a standard
BST node

• A 4-node can be
represented with three BST
nodes

• A 3-node can be
represented with two BST
nodes (in two different
ways)

A B C

CA

B
4-node

A

B

B

A3-node

or
A B

7

Red-Black Trees
• We need a way to tell when

an emulated 234-node
starts and ends

• We mark the nodes
Black: “root” of 234-node
Red: belongs to parent
Requires one bit per node

• 234-tree rules become rules
for rotations and color
changes in red-black trees

• Result:
one black node per 234-
node
Number of black nodes on
path from root to leaf is
same as height of 234-tree
All paths from root to leaf
have same number of black
nodes
On any path: at most one red
node per black node
Thus tree height for red-
black tree is O(log n)

Balanced Tree Schemes
• AVL trees [1962]

named for initials of Russian
creators
uses rotations to ensure
heights of child trees differ
by at most 1

• 23-Trees [Hopcroft 1970]
similar to 234-tree, but
repairs have to move back
up the tree

• B-Trees [Bayer &
McCreight 1972]

• Red-Black Trees [Bayer
1972]

not the original name

• Red-black convention &
relation to 234-trees
[Guibas & Stolfi 1978]

• Splay Trees [Sleator &
Tarjan 1983]

• Skip Lists [Pugh 1990]
developed at Cornell

Selecting a Dictionary Scheme
• Use an unordered array for

small sets (< 20 or so)
• Use a Hash Table if possible

Cannot efficiently do some ops
that are easy with BSTs
Running times are expected
rather than worst-case

• Use an ordered array if few
changes after initialization

• B-Trees are best for large data
sets, external storage

Widely used within data base
software

• Otherwise, Red-Black Trees
are current scheme of choice

• Skip Lists are supposed to be
easier to implement

But shouldn’t have to
implement—use existing code

• Splay trees are useful if some
items are accessed more often
than others

But if you know which items
are most-commonly accessed,
use a separate data structure

Selecting a Priority Queue Scheme
• Use an unordered array for

small sets (< 20 or so)
• Use a sorted array or sorted

linked list if few insertions
are expected

• Use an array of linked lists
if there are few priorities

Each linked list is a queue of
equal-priority items
Very easy to implement

• Otherwise, use a Heap if
you can

• Heap + Hashtable
Allow change-priority
operation to be done in
O(log n) expected time

• Balanced tree schemes
Useful and practical

• There are a number of
alternate implementations
that allow additional
operations

Skew heaps
Pairing heaps
Fibonacci heaps
…

