

Insert and GetMax Pseudocode

insert (Item):

Place item in a leaf (= next empty position in array);
while (item > parent) \{Swap item with parent; $\quad / /$ BubbleUp
getMax ():
max = root.value;
Swap root and last item (call it v) in heap; // Ensures same shape for heap
Decrease heap size by 1 (i.e., access less of the array);
while ($\mathrm{v}<$ one of its children) // BubbleDown
\{Swap v with its largest child; \}
return max; reme

Announcements

- Assignment 5 is online (since Friday)
- Due Wednesday, Nov 2
- Multiple small tasks

Lecture 17

CS211 - Fall 2005

Announcements
• Assignment 5 is online (since Friday)
- Due Wednesday, Nov 2
- Multiple small tasks

Heap Implementation (the Big Trick)

- Can avoid using pointers!
- Use a complete binary tree stored in an array
- Definition: Complete means that each level of the tree is filled except possibly the last, which is filled from left to right
- For A[i]
- left child $=2$ * i
- right child $=2 * i+1$
- parent $=\lfloor$ i $/ 2\rfloor$

To Build a Heap

- How long to construct a heap, given the items?
- Worst-case time for insert() is $\mathrm{O}(\log n)$
- Total time to build heap using insert() is
$\mathrm{O}(\log 1)+\mathrm{O}(\log 2)+\ldots+\mathrm{O}(\log \mathrm{n})$ or $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Can we do better?

- We had two heap-fixing methods
bubbleUp: move up the tree as long as we're > our parent
bubbleDown: move down the tree as long as we're $<$ one of our children
- If we build the heap from the bottom-up using bubbleDown then we can build it in time $\mathrm{O}(\mathrm{n})$ (Wow!)

Efficient Heap Building

- Build from the bottom-up
- If there are n items in the heap then...
- There are about $\mathrm{n} / 2 \mathrm{mini}$ heaps of height 1
- There are about $\mathrm{n} / 4$ miniheaps of height 2
- There are about $\mathrm{n} / 8$ miniheaps of height 3 and so on
- The time to fix up a miniheap is O (its height)
- Total time spent fixing heaps is thus bounded by $\mathrm{n} / 2+2 \mathrm{n} / 4+3 \mathrm{n} / 8+\ldots$.
- This can be rewritten as $\mathrm{n}\left(1 / 2+2 / 4+\ldots+\mathrm{i} / 2^{\mathrm{i}}+\ldots\right)$ $=n(2)$
- Thus total heap-building time (using the bottom-up method) is $\mathrm{O}(\mathrm{n})$

HeapSort

- Given a Comparable[] array of length n,
- Put all n elements into a heap: $O(n)$ or $O(n \log n)$
- Repeatedly get the min: $O(n \log n)$

```
public static void heapSort(Comparable[] a) {
    PriorityQueue<Comparable> pq = new PQ<Comparable>()
    for (Comparable x : a) { pq.put(x); }
    for (int i = 0; i < a.length; i++) {a[i] = pq.get(); }
}
```


PQ Application: Simulation

- Example: Given a probabilistic model of bank-customer arrival times and transaction times, how many tellers are needed
- Assume we have a way to generate random interarrival times
- Assume we have a way to generate transaction times
- Can simulate the bank to get some idea of how long customers must wait

Time-Driven Simulation

- Check at each tick to see if any event occurs

Event-Driven Simulation

- Advance clock to next event, skipping intervening ticks
- This uses a PQ!

Another PQ Implementation

- If there are only a few possible priorities then can use an array of queues
- Each array position represents a priority ($0 . . \mathrm{m}-1$ where m is the array size)
- Each queue holds all items that have that priority
- One text [Skiena] calls this a bounded height priority queue
- Time for insert: $\mathrm{O}(1)$
- Time for getMax:
- $\mathrm{O}(\mathrm{m})$ in the worst-case
- Generally, faster
- Example: airline check-in

Other PQ Operations

delete a particular item	- For delete and update, we need to be able to find the item
update an item (change its priority)	One way to do this: Use a Dictionary to keep track of the item's position in the heap
join	Efficient joining of 2 two priority queues
	Priority Queues requires another data structure
	- Skew Heaps or Pairing
Heaps (Chapter 23 in text)	

- ADT Set

Operations:
void insert (Object element);
boolean contains (Object element);
void remove (Object element);
boolean isEmpty ();
void makeEmpty ();

- Note: no duplicates allowed
- A "set" with duplicates is
usually called a bag
- Where used:
- Wide use within other algorithms
- ADT Dictionary

Operations:
void insert (Object key, Object value); void update (Object key, Object value);
Object find (Object key);
void remove (Object key);
boolean isEmpty ();
void makeEmpty ()

- Think of key $=$ word; value $=$ definition
- Where used:
- Symbol tables
- Wide use within other algorithms

Implementing Sets

- Recall: ADT Set

Operations:
void insert (Object element);
boolean contains (Object element);
void remove (Object element);
boolean isEmpty ();
void makeEmpty ();

- Can use a Dictionary
- Values in (key, value) pairs are ignored
- All operations are expected time $\mathrm{O}(1)$ using hash table (see next several slides)
- If the universe is not too large
- Can use a table of bits (i.e., a bit-vector)
- We need n bits for a universe of size n
- This implementation also allows for fast union, intersection, and complement

Direct Address Table

- Assumes the key set is from a small Universe
- Example: Addresses on my street
- Start at 1 , go to 40
- A few lots don't have houses
- For a Direct Address Table, we make an array as large as the Universe
- To find an entry, we just index to that entry of the array
- Dictionary operations all take $\mathrm{O}(1)$ time

Goal: Design a Dictionary

- Operations
- void insert (key,value)
- void update (key, value)
- Object find (key)
- void remove (key)

Array implementation:
Uses an array of (key,value) pairs Unsorted

nsert	$O(1)$	$O(n)$
update	$O(n)$	$O(\log n)$
find	$O(n)$	$O(\log n)$
remove	$O(n)$	$O(n)$

n is the number of items currently held in the array

What if the Universe is large?

- Idea is to re-use table
entries via a hash function Typical situation: h
$\mathrm{U}=$ all legal identifiers
- $\mathrm{h}: \mathrm{U} \rightarrow[0, \ldots, \mathrm{~m}-1]$
where $\mathrm{m}=$ table size
Typical hash function:
$\quad h$ converts each letter to a
- h must number and we compute a function of these numbers
- Be easy to compute
- Cause few collisions
- Have equal probability for each table position

A Hashing Example

- Suppose each word below has the following hashCode

jan	7
feb	0
mar	5
apr	2
may	4
jun	7
jul	3
aug	7
sep	2
oct	5

- How do we resolve collisions?
- We'll use chaining: each table position is the head of a list
- For any particular problem, this might work terribly
- In practice, using a good hash function, we can assume each position is equally likely

Analysis for Hashing with Chaining

- Analyzed in terms of load
factor $\lambda=\mathrm{n} / \mathrm{m}=$
(items in table)/(table size)
- We count the expected number of probes (key comparisons)
- Goal: Determine $\mathrm{U}=$ number of probes for an unsuccessful search
- Claim U is the same as the average number of items per table position $=\mathrm{n} / \mathrm{m}=$ λ
- Claim $\mathrm{S}=$ number of probes for a successful search $=1+\lambda / 2$

Table Doubling

- We know each operation takes time $\mathrm{O}(\lambda)$ where $\lambda=\mathrm{n} / \mathrm{m}$
- But isn't $\lambda=\Theta(\mathrm{n})$?
- What's the deal here? It's still linear time!

Table Doubling:

- Set a bound for λ (call it λ_{0})
- Whenever λ reaches this bound we
- Create a new table, twice as big and
- Re-insert all the data
- Easy to see operations usually take time $\mathrm{O}(1)$
- But sometimes we copy the whole table

Analysis of Table Doubling

- Suppose we reach a state with n items in a table of size m and that we have just completed a table doubling

	Copying Work
Everything has just been copied	n inserts
Half were copied previously	$\mathrm{n} / 2$ inserts
Half of those were copied previously	$\mathrm{n} / 4$ inserts
\ldots	\ldots
Total work	$\mathrm{n}+\mathrm{n} / 2+\mathrm{n} / 4+\ldots=2 \mathrm{n}$

Analysis of Table Doubling, Cont'd

- Total number of insert operations needed to reach current table $=$ copying work + initial insertions of items
$=2 \mathrm{n}+\mathrm{n}=3 \mathrm{n}$ inserts
- Each insert takes expected time $\mathrm{O}\left(\lambda_{0}\right)$ or $\mathrm{O}(1)$, so total expected time to build entire table is $\mathrm{O}(\mathrm{n})$

Disadvantages of table doubling:

- Worst-case insertion time of $\mathrm{O}(\mathrm{n})$ is definitely achieved (but rarely)
- Thus, not appropriate for time critical operations
- Thus, expected time per
operation is $\mathrm{O}(1)$

Java Hash Functions

- Most Java classes implement the hashCode() method
- hashCode() returns an int
- Java's HashMap class uses $h(X)=X . h a s h C o d e() \bmod m$
- $\mathrm{h}(\mathrm{X})$ in detail:
int hash $=\mathrm{X}$.hashCode()
int index $=($ hash \& 0x7FFFFFFF) $\%$ m;

What hashCode() returns: Integer: uses the int value Float: converts to a bit representation and treats it as an int
Short Strings: $37 *$ previous + value of next character
Long Strings: sample of 8 characters; 39 *previous + next value

hashCode() Requirements

- Contract for hashCode() method:
- Whenever it is invoked in the same object, it must return the same result
- Two objects that are equal must have the same hash code
- Two objects that are not equal should return different hash codes, but are not required to do so

Hash Tables in Java

java.util.HashMap
java.util.HashSet
java.util.Hashtable (legacy)
A node in each chain looks like this:

- Use chaining
- Initial (default) size $=101$
- Load factor $=\lambda_{0}=0.75$

Allows faster rehashing and (possibly) faster key comparison]

- Uses table doubling ($2 *$ previous +1)

Hashing Application: Spell Checking

- We want to create a "spelling dictionary" containing 10,000 words
- A spelling query should be fast
- Should return true iff word is contained in dictionary
- Basic idea:
- Use a Hashtable consisting only of bits (say 100 K bytes or about 800,000 bits)
- Compute a hash value for each word and turn on the corresponding bit in the table
- What's the probability of a false positive? (It's too high!)
- Fix: Use more hash functions

Linear \& Quadratic Probing

- These are techniques in which all data is stored directly within the hash table array
- Linear Probing
- Probe at $\mathrm{h}(\mathrm{X})$, then at $\mathrm{h}(\mathrm{X})+1$
$h(X)+2$
$\mathrm{h}(\mathrm{X})+\mathrm{i}$
- Leads to primary clustering
- Long sequences of filled cells
- Quadratic Probing
- Similar to Linear Probing in that data is stored within the table
- Probe at $\mathrm{h}(\mathrm{X})$, then at $\mathrm{h}(\mathrm{X})+1$ $\mathrm{h}(\mathrm{X})+4$ $\mathrm{h}(\mathrm{X})+9$ $h(\mathrm{X})+\mathrm{i}^{2}$
- Works well when $\lambda<0.5$ table size is prime

Hash Table Pitfalls

- Good hash function is required
- Watch the load factor (λ), especially for Linear \& Quadratic Probing

Dictionary Implementations

- Ordered Array
- Better than unordered array because Binary Search can be used
- Unordered Linked-List
- Ordering doesn't help
- Direct Address Table
- Small universe \Rightarrow limited usage
- Hashtables
- $\mathrm{O}(1)$ expected time for Dictionary operations
- Goal: Want ability to report-inorder, but can't afford inefficiency of ordered array
- Idea: Use a Binary Search Tree (BST)
- BST Property:

Deleting from a BST

Cases:

- Delete a leaf
- easy
- Delete a node with just one child
- delete and replace with child
- Delete a node with two children
- delete node's successor
- write successor's data into node
- How do we find the successor?
- The successor always has at most one child. Why?
- Would work just as well using predecessor instead of successor

BST Performance

- Time for insert(), find(), update(), remove() is $\mathrm{O}(h)$ where h is the height of the tree
- How bad can h be?
- Operations are fast if tree is balanced
- How balanced is a random tree?
- If items are inserted in random order then the expected height of a BST is $\mathrm{O}(\log n)$ where n is the number of items
- If deletion is allowed
- Tree is no longer random
- Tree is likely to become unbalanced

Analysis Sketch for Random BST

- Only the number of items and their order is important
- Can restrict our attention to BSTs containing items $\{1, \ldots, n\}$
- We assume that each item is equally likely to appear as the root
- Define $\mathrm{H}(n) \equiv$ expected height of BST of size n
- If item i is the root then expected height is
$1+\max \{\mathrm{H}(\mathrm{i}-1), \mathrm{H}(\mathrm{n}-\mathrm{i})\}$
We average this over all possible i
- Can solve the resulting recurrence (by induction) to show $\mathrm{H}(\mathrm{n})=\mathrm{O}(\log \mathrm{n})$

Why use a BST instead of a Hashtable?

- If we use a balanced BST scheme then we achieve guaranteed worst-case time bound of $\mathrm{O}(\log n)$ for typical Dictionary ops
- There are some operations that can be efficient on BSTs, but very inefficient on Hashtables report-elements-in-order getMin getMax select(k) // find the k-th element (maintain size of each subtree by each node)
- Note that balanced BST schemes can be difficult to implement
- But there are lots of reliable codes for these schemes available on the Web
- Java includes a balanced BST scheme among its standard packages (java.util.TreeMap and java.util.TreeSet)

Example Balancing Scheme: 234-Trees

- Nodes have 2, 3, or 4 children (and contain 1, 2, or 3 keys, respectively)
- All leaves are at the same level
- Basic rule for insertion: We hate 4-nodes
- Split a 4-node whenever you find one while coming down the tree
- Note: this requires that parent is not a 4-node
- Delete is harder than insert
- For delete, we hate 2-nodes
- As in BSTs, cannot delete from a nonleaf so we use same BST trick: delete successor and recopy its data

234-Tree Implementation

- Can implement all nodes as 4-nodes
- Wasted space
- Can allow various node sizes
- Requires recopying of data whenever a node changes size
- Can use BST nodes to emulate 2-, 3-, or 4-nodes

234-Tree Analysis

- Time for insert or get is proportional to tree's height
- How big is tree's height h ?
- Let n be the number of nodes in a tree of height h
- n is large if all nodes are 4nodes
- n is small if all nodes are $2-$ nodes
- Can use this to show $\mathrm{h}=\mathrm{O}(\log \mathrm{n})$

Analysis of tree height:

- Let N be the number of nodes, n be the number of items, and h be the height
- Define h so that a tree consisting of a single node is height 0
- It's easy to see $1+2+4+\ldots+2^{\mathrm{h}} \leq \mathrm{N} \leq$ $1+4+16+\ldots+4^{\text {h }}$
- It's also easy to see $\mathrm{N} \leq \mathrm{n} \leq 3 \mathrm{~N}$
- Using the above, we have $\mathrm{n} \geq$ $1+2+4+\ldots+2^{\mathrm{h}}=2^{\mathrm{h}+1}-1$
- Rewriting, we have $\mathrm{h} \leq \log (\mathrm{n}+1)$ 1 or $\mathrm{h}=\mathrm{O}(\log \mathrm{n})$
- Thus, Dictionary operations on 234-trees take time $O(\log n)$ in the worst case

Using BSTs to Emulate 234-Trees

Red-Black Trees

- We need a way to tell when an emulated 234-node starts and ends
- We mark the nodes
- Black: "root" of 234-node
- Red: belongs to parent
- Requires one bit per node
- 234-tree rules become rules for rotations and color changes in red-black trees
- Result:
- one black node per 234node
- Number of black nodes on path from root to leaf is same as height of 234 -tree
- All paths from root to leaf have same number of black nodes
- On any path: at most one red node per black node
- Thus tree height for redblack tree is $\mathrm{O}(\log \mathrm{n})$

Balanced Tree Schemes

- AVL trees [1962]
- named for initials of Russian creators
- uses rotations to ensure heights of child trees differ by at most 1
- 23-Trees [Hopcroft 1970]
- similar to 234-tree, but repairs have to move back up the tree
- B-Trees [Bayer \&

McCreight 1972]
Red-Black Trees [Bayer 1972]

- not the original name
- Red-black convention \& relation to 234-trees [Guibas \& Stolfi 1978]
- Splay Trees [Sleator \& Tarjan 1983]
- Skip Lists [Pugh 1990]
- developed at Cornell

Selecting a Dictionary Scheme

- Use an unordered array for small sets (<20 or so)
- Use a Hash Table if possible
- Cannot efficiently do some ops that are easy with BSTs
- Running times are expected rather than worst-case
- Use an ordered array if few changes after initialization
- B-Trees are best for large data sets, external storage
- Widely used within data base software
- Otherwise, Red-Black Trees are current scheme of choice
- Skip Lists are supposed to be easier to implement
- But shouldn't have to implement-use existing code
- Splay trees are useful if some items are accessed more often than others
- But if you know which items are most-commonly accessed, use a separate data structure

Selecting a Priority Queue Scheme

- Use an unordered array for small sets (<20 or so)
- Use a sorted array or sorted linked list if few insertions are expected
- Use an array of linked lists if there are few priorities
- Each linked list is a queue of equal-priority items
- Very easy to implement
- Otherwise, use a Heap if you can
- Heap + Hashtable
- Allow change-priority operation to be done in $\mathrm{O}(\log \mathrm{n})$ expected time
- Balanced tree schemes
- Useful and practical
- There are a number of alternate implementations that allow additional operations
- Skew heaps
- Pairing heaps
- Fibonacci heaps

