
1

Abstract Data Types
&

Implementations

Lecture 16
CS211 – Fall 2005

Program Design Strategies
• Goal: Make it easier to

design/create programs

• Basic Data Structures
I recognize this; I can use this
well-known data structure
Examples: Stack, Queue,
Priority Queue, Hashtable,
Binary Search Tree

• Algorithm Design Methods
I can design an algorithm to
solve this
Examples: Divide & Conquer,
Greedy, Dynamic
Programming

• Problem Reductions
I can change this problem into
another with a known solution
Or, I can show that a
reasonable algorithm is most-
likely impossible
Examples: reduction to network
flow, NP-complete problems

Abstract Data Types (ADTs)
• A method for achieving

abstraction for data structures
and algorithms

• ADT = model + operations

• Describes what each operation
does, but not how it does it

• An ADT is independent of its
implementation

• In Java, an interface corresponds well
to an ADT

The interface describes the
operations, but says nothing at all
about how they are implemented

• Example: Stack interface/ADT
public interface Stack {

public void push (Object x);
public Object pop ();
public Object peek ();
public boolean isEmpty ();
public void makeEmpty ();
}

Queues & Priority Queues
• ADT Queue

Operations:
void enQueue (Object x);
Object deQueue ();
Object peek ()
boolean isEmpty ();
void makeEmpty ();

Where used:
Simple job scheduler (e.g.,
print queue)
Wide use within other
algorithms

• ADT PriorityQueue

Operations:
void insert (Object x);
Object getMax ();
Object peekAtMax ();
boolean isEmpty ();
void makeEmpty ();

Where used:
Job scheduler for OS
Event-driven simulation
Can be used for sorting
Wide use within other
algorithms

Sets & Dictionaries
• ADT Set

Operations:
void insert (Object element);
boolean contains (Object element);
void remove (Object element);
boolean isEmpty ();
void makeEmpty ();

Note: no duplicates allowed
• A “set” with duplicates is

usually called a bag

• Where used:
Wide use within other
algorithms

• ADT Dictionary
Operations:

void insert (Object key, Object value);
void update (Object key, Object value);
Object find (Object key);
void remove (Object key);
boolean isEmpty ();
void makeEmpty ();

Think of
key = word; value = definition

• Where used:
Symbol tables
Wide use within other
algorithms

Data Structure Building Blocks
• These are implementation “building blocks” that

are often used to build more-complicated data
structures

Arrays
Linked Lists

• Singly linked
• Doubly linked

Binary Trees
Graphs

• Adjacency matrix
• Adjacency list

2

Array Implementation of Stack
class StackArray implements Stack {

Object [] s; // Holds the stack
int top; // Index of stack top
public StackArray(int max) // Constructor

{s = new Object [max]; top = -1;}
public void push (Object item) {s [++top] = item;}
public Object pop () {return s [top – –];}
public Object peek () {return s [top];}
public boolean isEmpty() {return top == -1;}
public void makeEmpty() {top = -1;}
}

// Better for garbage collection if makeEmpty() also cleared the
array

max-1

3
2
1
0

3

top

O(1) worst-
case time for

each
operation

Linked List Implementation of Stack
class StackLinked implements Stack {

class Node {Object data; Node next; // An inner class
Node (Object d, Node n) // Constructor for Node

{data = d; next = n;}
}

Node top; // Top Node of stack
public StackLinked () {top = null;} // Constructor
public void push (Object item) {top = new Node(item,top);}
public Object pop () {

Object temp = top.data; top = top.next; return temp;}
public boolean isEmpty () {return top == null;}
public void makeEmpty () {top = null;}

}
top

O(1) worst-
case time for

each
operation

Note that the array
implementation

can overflow, but
the linked list
version can’t

Queue Implementations
• Possible implementations • Recall: operations are enQueue,

deQueue, peek,…

For linked-list
• All operations are O(1)

For array with head at A[0]
• deQueue takes time O(n)
• Other ops are O(1)
• Can overflow

For array with wraparound
• All operations are O(1)
• Can overflow

Linked List
head last

Array with wraparound
(can overflow)

head last

Array with head always at A[0]
(deQueue() becomes expensive)

(can overflow)

last

Choosing an Implementation

Issues:
• What operations do I need to perform on the data?

Insertion, deletion, searching, reset to initial state?
• How efficient do the operations need to be?
• Are there any additional constraints on the operations or on the data

structure?
Can there be duplicates?
When extracting elements, does order matter?

• Is there a known upper bound on the amount of data? Or can it grow
unboundedly large?

Priority Queue Implementations

Can we do better than balanced trees?
Well no, not in terms of big-O bounds, but…

O(log n)
worst-case

O(log n)
expectedO(1)O(n)O(1)O(n)removeMax()

O(log n)
worst-case

O(log n)
expectedO(n)O(1)O(n)O(1)insert(item)

Balanced
BSTBST*Ordered

Array
Unordered

Array
Ordered

List
Unordered

List

* BST becomes unbalanced as PQ is used

Heaps
• A heap is a tree that

Has a particular shape (we’ll
come back to this) and
Has the heap property

• Heap property
Each node’s value (its
priority) is ≤ the value of its
parent
This version is for a max-
heap (max value at the root)

• There is a similar heap
property for a min-heap
(min at the root)

41

15

20

27

33

22

10

41

15

20

33

27

22

10

Has heap property

Does not have
heap property

3

Heap Property Examples
• Ages of people in a family tree

Child is younger than parent
But an aunt can be younger
than her niece

• Salaries of people in an
organization

A boss makes more money than
a subordinate
But a 2nd level manager in one
region may make more than a
1st level manager in another
region

• Crime family ordered by
“ruthlessness” (measured by
number of murders each member
is responsible for)

Max, the top crime boss, must
be the most ruthless

41

15

20

27

33

22

10

GetMax

• What would happen if
someone were to “get”
Max (the top boss)?

This leaves a hole at the root
We must maintain the heap
property so…

• The most ruthless
subordinate moves up to
fill the hole

This leaves another hole that
we fill in the same way
We finally create an empty
leaf which we delete

41

15

20

27

33

22

10

33

15

20

22

27

10

X

X

Insert

• What happens when “Fat
Tony” arrives from
Detroit?

He starts as a leaf
We must maintain the heap
property, so…

• If he is more ruthless than
his boss, they swap
positions

33

15

20

22

27

25

10

33

20

25

22

27

15

10

Heap Implementation
• This works great, but…

Operations insert and
getMax can be slow if the
tree is “skinny”

• Both take linear time on a
skinny tree and O(log n)
time on a fat tree

• How can we ensure that
our heap-tree is fat?

33

15

20

22

27

1033

15

20

10

27

22

Both of these
trees have the
heap property

Heap Implementation (the Big Trick)

• Can avoid using pointers!
• Use a complete binary tree

stored in an array
Definition: Complete means
that each level of the tree is
filled except possibly the
last, which is filled from left
to right

• For A[i]
left child = 2 * i
right child = 2 * i + 1
parent = i / 2

A[i]

A[2∗i] A[2∗i+1]

Insert and GetMax Pseudocode
insert (Item):

Place item in a leaf (= next empty position in array);
while (item > parent) {Swap item with parent;} // BubbleUp

getMax ():
max = root.value;
Swap root and last item (call it v) in heap; // Ensures same shape for heap
Decrease heap size by 1 (i.e., access less of the array);
while (v < one of its children) // BubbleDown

{Swap v with its largest child;}
return max;

4

To Build a Heap
• How long to construct a

heap, given the items?
• Worst-case time for insert()

is O(log n)
• Total time to build heap

using insert() is
O(log 1) + O(log 2) + ... + O(log n)

or O(n log n)

Can we do better?

• We had two heap-fixing
methods

bubbleUp: move up the tree as
long as we’re > our parent

bubbleDown: move down the
tree as long as we’re < one
of our children

• If we build the heap from
the bottom-up using
bubbleDown then we can
build it in time O(n)
(Wow!)

Efficient Heap Building
• Build from the bottom-up
• If there are n items in the

heap then...
There are about n/2 mini-
heaps of height 1
There are about n/4 mini-
heaps of height 2
There are about n/8 mini-
heaps of height 3 and so on

• The time to fix up a mini-
heap is O(its height)

• Total time spent fixing
heaps is thus bounded by

n/2 + 2n/4 + 3n/8 +

• This can be rewritten as
n(1/2 + 2/4 + ... + i/2i + ...)

= n(2)

• Thus total heap-building
time (using the bottom-up
method) is O(n)

HeapSort

• Given a Comparable[] array of length n,

Put all n elements into a heap: O(n) or O(n log n)
Repeatedly get the min: O(n log n)

public static void heapSort(Comparable[] a) {
PriorityQueue<Comparable> pq = new PQ<Comparable>();
for (Comparable x : a) { pq.put(x); }
for (int i = 0; i < a.length; i++) { a[i] = pq.get(); }

}

PQ Application: Simulation
• Example: Given a

probabilistic model of
bank-customer arrival
times and transaction
times, how many tellers are
needed

Assume we have a way to
generate random inter-
arrival times
Assume we have a way to
generate transaction times
Can simulate the bank to get
some idea of how long
customers must wait

Time-Driven Simulation
• Check at each tick to see if

any event occurs

Event-Driven Simulation
• Advance clock to next

event, skipping intervening
ticks

• This uses a PQ!

Another PQ Implementation
• If there are only a few

possible priorities then can
use an array of queues

Each array position
represents a priority (0..m-1
where m is the array size)
Each queue holds all items
that have that priority

• One text [Skiena] calls this
a bounded height priority
queue

• Time for insert: O(1)
• Time for getMax:

O(m) in the worst-case
Generally, faster

• Example: airline check-in

m-1

0
1

Other PQ Operations
delete

a particular item

update
an item (change its
priority)

join
two priority queues

• For delete and update, we
need to be able to find the
item

One way to do this: Use a
Dictionary to keep track of
the item’s position in the
heap

• Efficient joining of 2
Priority Queues requires
another data structure

Skew Heaps or Pairing
Heaps (Chapter 23 in text)

