Iterators &
Inner Classes

Lecture 15
CS211 - Fall 2005

Announcements

* Section 8 * Need a hw partner?
(W 1:25-2:15 OH 165) * Sign up after class or
has been folded into * Email Prof Schwartz
Section 5

(W 1:25-2:15 BD 140)
= All students with W 1:25
section should meet in
BD 140

Recall: Linear Search

» First version:
= Input was int[], used “==""to compare elements

* More generic version:

= Input was Comparable[], used compareTo()

* Is there a still more generic version that is
independent of the data structure?

= For example, works even with Comparable[][]

Iterator Interface

* java.util.Iterator

* Linear search can be written once and for all using
Iterator interface
= Any data structure that wants to support linear search
must implement Iterator
= We look at three ways to implement Iterator
< Using a separate class
« Using an inner class

+ Using an anonymous inner class

Linear Search

boolean linearSearch(Comparable[] a, Object v) {
for (int i = 0; i < a.length; i++) {
if (a[i].compareTo(v) == 0) return true;
}

return false;

* Relies on data being stored in a 1D array
= Will not work if data is stored in another data structure such as a
2D array, list, stack, queue, ...
* All linear search really needs is:
= Are there more elements to look at?
= If 50, get me the next element

Generic Linear Search

22 9 4, Linear search

« Data is contained in $ome object
« Object has an adapter that permits data to be enumerated in some order
< Adapter has two buttons
= boolean hasNext (): are there more elements?
= Object next():ifso, give me a new element that has not been
enumerated so far

Iterator Interface

interface Iterator {
boolean hasNext();
Object next();
void remove(); // Optional operation

}

interface Iterable {
Iterator iterator();

}

« Predefined in Java
= java.util.Iterator
= java.util.Iterable
« Linear search can be written using Iterator interface
* Any class that wishes to allow linear searching can do so by
implementing Iterable (i.e., by providing an Iterator)

Enumeration Interface

interface Enumeration {
boolean hasMoreElements () ;
Object nextElement() ;

* You may see some code that uses the Enumeration interface
instead of the Iterator interface
= Enumeration was part of the earliest versions of Java
= Similar functionality to Iterator (no remove method)
= [terator is preferred

Generic Linear Search

Array version

boolean linearSearch(Object[] a, Object v) {
for (int i = 0; i < a.length; i++) {
if (a[i] .equals(v)) return true;
}

return false;

lterator version

boolean linearSearch(Iterator a, Object v) {
while (a.hasNext()) {
if (a.next() .equals(v)) return true;
}

return false;

How Do We Create an Iterator?

« Iterator is a Java interface, so we must create a
class that implements Iterator

e To create an Iterator for class X, we can
= Use a separate class
= Use an inner class within X

= Use an anonymous inner class within X

An Array Iterator (Version 1)

class ArrayIterator implements Iterator {
private Object[] data;
private int index = 0; // Index of next element

public ArrayIterator (Object[] a)
{data = a;}
public boolean hasNext()
{return (index < data.length);}
public Object next()
{return data[index++];}
public void remove ()
{throw new UnsupportedOperationException();}

Using the Arraylterator

String[] a = {"Hello", "world"};

Iterator iter = new Arraylterator(a);

while (iter.hasNext()) {
System.out.println(iter.next());

}

iter = new ArraylIterator(a);
if linearSearch(iter,"world") {

System.out.println("found!") ;
}

Iterator Features

* Can create as many iterators as needed

= Multiple iterators over same data set are fine (as long as
data set isn’t changed during iteration)

» Works for most data structures
= Example: 2D arrays

 Can keep two cursors, one for row, one for column

« Standard orders of enumeration

class Array2DIterator implements Iterator {
private Object[][] data;
private int rowIndex = 0, colIndex = 0;

public Array2DIterator (Object[][] a) { data = a; }

public boolean hasNext() {
while (rowIndex < data.length
&& colIndex >= data[rowIndex].length) {
rowIndex++; colIndex = 0; //if end of row
}
return (rowIndex < data.length
&& colIndex < data[rowIndex].length) ;
}
public Object next() {
if (hasNext()) return data[rowIndex] [colIndex++];
else throw new NoSuchElementException() ;
}
public void remove() {
throw new Un dOperati tion() ;

}

Sharks and Remoras

Iterator implementation
is like a remora Data class is like shark

A single shark must allow many remoras to hook to it

class Shark implements Iterable {
public Object[] data;
public Shark (Object[] a) { data = a; }
public Iterator iterator()
{return new Remora (this) ;}

}

class Remora implements Iterator {
private int index = 0;
private Shark shark;
public Remora(Shark s) { shark = s; }
public boolean hasNext()
{return (index < shark.data.length);}
public Object next()
{return shark.data[index++];}
public void remove ()
{throw new UnsupportedOperationException() ;}

Client Code

String[] a = {"Hello", "world"};

Shark s = new Shark(a); //object containing data
boolean b = linearSearch(s.iterator(), "Hello");
boolean ¢ = linearSearch(s.iterator (), "world");
boolean d = linearSearch(s.iterator(), "Bye"):;

Shark
I N
shark=s | shark = s shark = s
index =0 index =0 index =0
[N} [I} [I}

Remora Remora Remora

Critique: Iterator as Separate Class

* Good
= Shark class focuses on data
= Remora class focuses on iteration
» Bad
= Remora code relies on being able to access Shark variables such as
data array
* What if data were declared private?
= Remora is specialized to Shark, but code appears outside Shark
class
* We may change Shark class and forget to update Remora
= Clients can create Remoras without invoking iterator() method of
Shark

 Better to have language construct to enforce convention

Better: Iterator as an Inner Class

* Inner class: Java allows you declare a class within another
class

* Inner classes can occur at many levels within another class
= Member level
* Inner class defined as if it were another field or method
= Statement level
« Inner class defined as if it were a statement in a method
= Expression level
« Inner class defined as it were part of an expression
* Such expression-level classes are called anonymous classes

* Initially, we focus on member-level inner classes

class Shark implements Iterable {
public Object[] data;
public Shark (Object[] a) { data = a; }
public Iterator iterator()

EXamp]C {return new Remora() ;}
of an class Remora implements Iterator {
private int index = 0;
Inner public boolean hasNext ()
Class {return (index < data.length);}

public Object next()
{return data[index++];}
public void remove ()
{throw new Unsupp dOperati tion();}

Client String[] a = {"Hello", "world"};
C d Shark s = new Shark(a);
ode boolean b = linearSearch(s.iterator(), "Hello");

Observations

* Inner class can be declared public, private, “package”, or
protected
= Inner class name is visible accordingly
* Instances of an inner class have access to all members of
containing outer-class instance
= Even members declared private
» Some inner-class syntax is weird

= Inner classes that are public can be instantiated by
outerObjectInstance.new InnerClass()

= E.g., myShark.new Remora ()

= Note that new Shark.Remora () does not work

= If you find yourself needing this syntax, you are probably using a
bad design

Inner Classes & this

« Keyword this in Remora class refers to Remora object-instance, not
outer Shark object-instance
+ How do we get a reference to Shark from Remora?

= Here’s one way:

class Shark {
private kahuna;
public Shark() { kahuna = this; }

class Remora{ //inner class
...kahuna... //inner class can access variable

= Here’s another way: Shark. this refers to the outer Shark object-
instance

Anonymous Classes

* To permit programmers to write inner classes
compactly, Java permits programmers to write
anonymous classes

= Class does not have a name
= Must be instantiated at the point where it is defined

Anonymous Class Example

class Shark implements Iterable {
public Object[] data;
public Shark (Object[] a) { data = a; }
public Iterator iterator() {
return new Remexa{)
-+
private int index = 0;
public boolean hasNext ()
{return (index < data.length);}
public Object next()
{return data[index++];}
public void remove ()
{throw new U: PP dOperati ption() ;}

Iterator {

Anonymous Class Example

class Shark implements Iterable {
public Object[] data;
public Shark (Object[] a) { data = a; }
public Iterator iterator() {
return new Iterator {
private int index = 0;
public boolean hasNext ()
{return (index < data.length);}
public Object next()
{return data[index++];}
public void remove ()
{throw new UnsupportedOperationException() ;}
}i
}
}

Anonymous-Class Properties

* An anonymous class is an inner class with the
usual class body, but
= No class name
= No access specifier (i.e., no public/private/protected)
= No constructor

= No explicit use of extends or implements

« It either extends one class or implements one interface

new classOrInterfaceName {...body...}

Anonymous Class Examples

« To specify an anonymous class (call it A) that extends class P

"new P { ... }; //create instance of A
" new P(42) { ... }; //calls different P-constructor
=P x=new P { ... }; //assignment

« To specify an anonymous class (call it A) that implements interface |
"new I { ...} //create instance of A
"I y=new I { ... }; //assignment

* Anonymous class can override methods of superclass P or implement
interface methods of T

« All other methods and fields are effectively private
= Because there is no way to invoke them from outside!

Enhanced for-loop

» As of Java 5, a for-loop works with
= Any array type
= Anything that implements the Iterable interface

Iterator version

boolean linearSearch(Iterator a, Object v) {
while (a.hasNext())
{if (a.next().equals(v)) return true;}
return false;

}

Iterable version

boolean linearSearch(Iterable b, Object v) {
for (Object x: b)
{if (x.equals(v)) return true;}
return false;

Conclusions

« Iterator interface allows one to write generic code

= Works on data collections without regard to type of elements or
data structure

* Inner classes are the best way to write an Iterator

* The for-each construct (i.e., enhanced for-loop) makes for
more compact code, but
= Cannot use if need access to array indices, for instance
= Cannot use if need to use remove-operation of Iterator

