
1

Iterators &
Inner Classes

Lecture 15
CS211 – Fall 2005

Announcements
• Section 8

(W 1:25-2:15 OH 165)
has been folded into
Section 5
(W 1:25-2:15 BD 140)

All students with W 1:25
section should meet in
BD 140

• Need a hw partner?
• Sign up after class or
• Email Prof Schwartz

Recall: Linear Search
• First version:

Input was int[], used “==” to compare elements

• More generic version:
Input was Comparable[], used compareTo()

• Is there a still more generic version that is
independent of the data structure?

For example, works even with Comparable[][]

Iterator Interface
• java.util.Iterator

• Linear search can be written once and for all using
Iterator interface

Any data structure that wants to support linear search
must implement Iterator
We look at three ways to implement Iterator

• Using a separate class
• Using an inner class
• Using an anonymous inner class

boolean linearSearch(Comparable[] a, Object v) {
for (int i = 0; i < a.length; i++) {

if (a[i].compareTo(v) == 0) return true;
}
return false;

}

Linear Search

• Relies on data being stored in a 1D array
Will not work if data is stored in another data structure such as a
2D array, list, stack, queue, ...

• All linear search really needs is:
Are there more elements to look at?
If so, get me the next element

Generic Linear Search

• Data is contained in some object
• Object has an adapter that permits data to be enumerated in some order
• Adapter has two buttons

boolean hasNext(): are there more elements?
Object next(): if so, give me a new element that has not been
enumerated so far

4 22
234 -9

4-922 Linear search

2

Iterator Interface

• Predefined in Java
java.util.Iterator
java.util.Iterable

• Linear search can be written using Iterator interface
• Any class that wishes to allow linear searching can do so by

implementing Iterable (i.e., by providing an Iterator)

interface Iterator {
boolean hasNext();
Object next();
void remove(); // Optional operation

}

interface Iterable {
Iterator iterator();

}

Enumeration Interface

• You may see some code that uses the Enumeration interface
instead of the Iterator interface

Enumeration was part of the earliest versions of Java
Similar functionality to Iterator (no remove method)
Iterator is preferred

interface Enumeration {
boolean hasMoreElements();
Object nextElement();

}

Generic Linear Search
Array version

Iterator version

boolean linearSearch(Object[] a, Object v) {
for (int i = 0; i < a.length; i++) {

if (a[i].equals(v)) return true;
}
return false;

}

boolean linearSearch(Iterator a, Object v) {
while (a.hasNext()) {

if (a.next().equals(v)) return true;
}
return false;

}

How Do We Create an Iterator?

• Iterator is a Java interface, so we must create a
class that implements Iterator

• To create an Iterator for class X, we can
Use a separate class
Use an inner class within X
Use an anonymous inner class within X

An Array Iterator (Version 1)

class ArrayIterator implements Iterator {
private Object[] data;
private int index = 0; // Index of next element

public ArrayIterator(Object[] a)
{data = a;}

public boolean hasNext()
{return (index < data.length);}

public Object next()
{return data[index++];}

public void remove()
{throw new UnsupportedOperationException();}

}

Using the ArrayIterator

String[] a = {"Hello", "world"};

Iterator iter = new ArrayIterator(a);
while (iter.hasNext()) {

System.out.println(iter.next());
}

iter = new ArrayIterator(a);
if linearSearch(iter,"world") {

System.out.println("found!");
}

3

Iterator Features

• Can create as many iterators as needed
Multiple iterators over same data set are fine (as long as
data set isn’t changed during iteration)

• Works for most data structures
Example: 2D arrays

• Can keep two cursors, one for row, one for column
• Standard orders of enumeration

Row-major
Column-major

class Array2DIterator implements Iterator {
private Object[][] data;
private int rowIndex = 0, colIndex = 0;

public Array2DIterator(Object[][] a) { data = a; }

public boolean hasNext() {
while (rowIndex < data.length
&& colIndex >= data[rowIndex].length) {

rowIndex++; colIndex = 0; //if end of row
}
return (rowIndex < data.length
&& colIndex < data[rowIndex].length);

}
public Object next() {

if (hasNext()) return data[rowIndex][colIndex++];
else throw new NoSuchElementException();

}
public void remove() {

throw new UnsupportedOperationException();
}

}

Sharks and Remoras

Data class is like shark
Iterator implementation

is like a remora

A single shark must allow many remoras to hook to it

class Shark implements Iterable {
public Object[] data;
public Shark(Object[] a) { data = a; }
public Iterator iterator()
{return new Remora(this);}

}

class Remora implements Iterator {
private int index = 0;
private Shark shark;
public Remora(Shark s) { shark = s; }
public boolean hasNext()
{return (index < shark.data.length);}

public Object next()
{return shark.data[index++];}

public void remove()
{throw new UnsupportedOperationException();}

}

String[] a = {"Hello", "world"};
Shark s = new Shark(a); //object containing data
boolean b = linearSearch(s.iterator(), "Hello");
boolean c = linearSearch(s.iterator(), "world");
boolean d = linearSearch(s.iterator(), "Bye");

Client Code

Shark

shark = s
index = 0

Remora

shark = s
index = 0

Remora

shark = s
index = 0

Remora

Critique: Iterator as Separate Class
• Good

Shark class focuses on data
Remora class focuses on iteration

• Bad
Remora code relies on being able to access Shark variables such as
data array

• What if data were declared private?
Remora is specialized to Shark, but code appears outside Shark
class

• We may change Shark class and forget to update Remora
Clients can create Remoras without invoking iterator() method of
Shark

• Better to have language construct to enforce convention

4

Better: Iterator as an Inner Class
• Inner class: Java allows you declare a class within another

class
• Inner classes can occur at many levels within another class

Member level
• Inner class defined as if it were another field or method

Statement level
• Inner class defined as if it were a statement in a method

Expression level
• Inner class defined as it were part of an expression
• Such expression-level classes are called anonymous classes

• Initially, we focus on member-level inner classes

Example
of an
Inner
Class

class Shark implements Iterable {
public Object[] data;
public Shark(Object[] a) { data = a; }
public Iterator iterator()
{return new Remora();}

class Remora implements Iterator {
private int index = 0;
public boolean hasNext()

{return (index < data.length);}
public Object next()

{return data[index++];}
public void remove()

{throw new UnsupportedOperationException();}
}

}

String[] a = {"Hello", "world"};
Shark s = new Shark(a);
boolean b = linearSearch(s.iterator(), "Hello");

Client
Code

Observations
• Inner class can be declared public, private, “package”, or

protected
Inner class name is visible accordingly

• Instances of an inner class have access to all members of
containing outer-class instance

Even members declared private

• Some inner-class syntax is weird
Inner classes that are public can be instantiated by
outerObjectInstance.new InnerClass()
E.g., myShark.new Remora()
Note that new Shark.Remora() does not work
If you find yourself needing this syntax, you are probably using a
bad design

Inner Classes & this
• Keyword this in Remora class refers to Remora object-instance, not

outer Shark object-instance
• How do we get a reference to Shark from Remora?

Here’s one way:

Here’s another way: Shark.this refers to the outer Shark object-
instance

class Shark {
private kahuna;
public Shark() { kahuna = this; }

class Remora{ //inner class
...kahuna... //inner class can access variable

}
}

Anonymous Classes

• To permit programmers to write inner classes
compactly, Java permits programmers to write
anonymous classes

Class does not have a name
Must be instantiated at the point where it is defined

Anonymous Class Example
class Shark implements Iterable {
public Object[] data;
public Shark(Object[] a) { data = a; }
public Iterator iterator() {
return new Remora();

}
class Remora implements Iterator {
private int index = 0;
public boolean hasNext()

{return (index < data.length);}
public Object next()

{return data[index++];}
public void remove()

{throw new UnsupportedOperationException();}
}

}

5

Anonymous Class Example
class Shark implements Iterable {
public Object[] data;
public Shark(Object[] a) { data = a; }
public Iterator iterator() {
return new Iterator {

private int index = 0;
public boolean hasNext()
{return (index < data.length);}

public Object next()
{return data[index++];}

public void remove()
{throw new UnsupportedOperationException();}

};
}

}

Anonymous-Class Properties

• An anonymous class is an inner class with the
usual class body, but

No class name
No access specifier (i.e., no public/private/protected)
No constructor
No explicit use of extends or implements

• It either extends one class or implements one interface

new classOrInterfaceName {...body...}

Anonymous Class Examples
• To specify an anonymous class (call it A) that extends class P

new P { ... }; //create instance of A
new P(42) { ... }; //calls different P-constructor
P x = new P { ... }; //assignment

• To specify an anonymous class (call it A) that implements interface I
new I { ... } //create instance of A
I y = new I { ... }; //assignment

• Anonymous class can override methods of superclass P or implement
interface methods of I

• All other methods and fields are effectively private
Because there is no way to invoke them from outside!

Enhanced for-loop
• As of Java 5, a for-loop works with

Any array type
Anything that implements the Iterable interface

Iterator version
boolean linearSearch(Iterator a, Object v) {

while (a.hasNext())
{if (a.next().equals(v)) return true;}

return false;
}

Iterable version
boolean linearSearch(Iterable b, Object v) {

for (Object x: b)
{if (x.equals(v)) return true;}

return false;
}

Conclusions
• Iterator interface allows one to write generic code

Works on data collections without regard to type of elements or
data structure

• Inner classes are the best way to write an Iterator

• The for-each construct (i.e., enhanced for-loop) makes for
more compact code, but

Cannot use if need access to array indices, for instance
Cannot use if need to use remove-operation of Iterator

