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Bounds 
on Sorting

Lecture 14
CS211 – Fall 2005

Prelim Announcements
• Prelim 1

Tonight 7:30 – 9:00pm
Last names starting with 
A-F are in HO 110
Last names starting with 
G-Z are in HO B14

• Grades will be available 
tomorrow (Friday)

This is the last day to drop a 
course

• Office hours are available 
before the exam

Regularly scheduled
• 11:00 – 12:00
• 1:25 – 2:15
• 3:00 – 4:00 

Extra
• 12:20 – 1:25

Check course website for 
latest info

More Announcements
• Using consultants

Do not work in consulting 
room after receiving help

• Work somewhere else so 
other students can ask 
questions

Do not use consultants as 
“human compilers”

• You are responsible for 
testing your code on your 
own

• Not incrementally with a 
consultant

• ACSU Ultimate Coding 
Challenge

Prizes: Xbox or Portable 
Media Center
Saturday, October 15th, 
2005 @ 10:00 am - 2:00 pm
Upson 319 (CSUG Lab)
FREE pizza and ACSU t-
shirts for all participants!
See 211 website for more 
info

Sorting Algorithm Summary
• The ones we have discussed

Insertion Sort
Selection Sort
Merge Sort
Quick Sort

• Other sorting algorithms
Heap Sort (come back to this)
Shell Sort (in text)
Bubble Sort (nice name)
Radix Sort
Bin Sort
Counting Sort

• Why so many?  Do Computer 
Scientists have some kind of 
sorting fetish or what?

Stable sorts: Ins, Sel, Mer
Worst-case O(n log n): Mer, Hea
Expected-case O(n log n): 
Mer, Hea, Qui
Best for nearly-sorted sets: Ins
No extra space needed: Ins, Sel, Hea
Fastest in practice: Qui
Least data movement: Sel

Programming Problem Strategies 
• Goal: Make it easier to solve 

programming problems

• Basic Data Structures
I recognize this; I can use this 
well-known data structure
Examples: Stack, Queue, 
Priority Queue, Dictionary

• Algorithm Design Methods
I can design an algorithm to 
solve this
Examples: Divide & Conquer, 
Greedy, Dynamic 
Programming

• Problem Reductions
I can change this problem into 
another with a known solution
Or, I can show that a 
reasonable algorithm is most-
likely impossible
Examples: reduction to network 
flow, NP-complete problems

Recall: Analysis of MergeSort
• One solution method for 

this recurrence
Can divide by n to get

T(n)/n = T(n/2)/(n/2) + 1

Define S(n) = T(n)/n

S(n) = S(n/2) + 1

Easy to see that 
S(n) = 2 + log n

Thus T(n) = n(2 + log n) or
T(n) = O(n log n)

• Time for Merge is O(n) 
where n is the number of 
elements being merged

• Time for MergeSort 

T(n) = 2T(n/2) + O(n) 
and T(1) = O(1)

Recurrence can be simplified 
to T(n) = 2T(n/2) + n

Solution is T(n) = O(n log n)
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Solving Recurrences
Recurrences are important when 

using Divide & Conquer to 
design an algorithm

Solution techniques:
• Can sometimes change 

variables to make it into a 
simpler recurrence 

• Make a guess then prove the 
guess correct by induction

• Build a recursion tree and use it 
to determine solution

• Can use the Master Method
A “cookbook” scheme that 
handles many common 
recurrences

To solve T(n) = aT(n/b) + f(n)
compare f(n) with nlogba

• Solution is T(n) = O(f(n))
if f(n) grows more rapidly

• Solution is T(n) = O(nlogba)
if nlogba grows more rapidly

• Solution is T(n) = O(f(n) log n)
if both grow at same rate

• Not an exact statement of the 
theorem [f(n) must be “well-
behaved”]

• See text for a similar theorem

Recurrence Relation Examples
• T(n) = T(n-1) + 1 [Linear Search]

T(n) = O(n)

• T(n) = T(n-1) + n [QuickSort worst-case]
T(n) = O(n2)

• T(n) = T(n/2) + 1 [Binary Search]
T(n) = O(log n)

• T(n) = T(n/2) + n
T(n) = O(n)

• T(n) = 2 T(n/2) + n [MergeSort]
T(n) = O(n log n)

Recurrences & CS211

• Solving recurrences is like integration
No general techniques work for all recurrences

• For CS 211, we just expect you to remember a few 
common patterns

Lower Bounds on Sorting: Goals
• Goal: Determine the 

minimum time required to 
sort n items

• Note: we want worst-case
not best-case time

Best-case doesn’t tell us 
much; for example, we 
know Insertion Sort takes 
O(n) time on already-sorted 
input
We want to determine the 
worst-case time for the best-
possible algorithm

• But how can we prove 
anything about the best 
possible algorithm?

We want to find 
characteristics that are 
common to all sorting 
algorithms

Let’s try looking at 
comparisons

Comparison Trees
• Any algorithm can be 

“unrolled” to show the 
comparisons that are 
(potentially) performed

Example
for (int i = 0; i < x.length; i++)

if (x[i] < 0) x[i] = – x[i];

• In general, you get a 
comparison tree

• If the algorithm fails to 
terminate for some input 
then the comparison tree is 
infinite

• The height of the 
comparison tree represents 
the worst-case number of 
comparisons for that 
algorithm

0 < length x[1] < 0

x[0] < 0

1 < length

2 < length

x[2] < 0

Lower Bounds on Sorting: Notation
• Suppose we want to sort the items in the array B[ ]

• Let’s name the items
a1 is the item initially residing in B[1], a2 is the item 
initially residing in B[2], etc.
In general, ai is the item initially stored in B[i]

• Rule: an item keeps its name forever, but it can 
change its location

Example: after swap(B,1,5), a1 is stored in B[5] and a5
is stored in B[1]
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The Answer to a Sorting Problem
• An answer for a sorting problem tells where each of the ai

resides when the algorithm finishes
• How many answers are possible?

• The correct answer depends on the actual values 
represented by each ai

• Since we don’t know what the ai are going to be, it has to 
be possible to produce each permutation of the ai

• For a sorting algorithm to be valid it must be possible for 
that algorithm to give any of n! potential answers

Comparison Tree for Sorting
• Every sorting algorithm has 

a corresponding 
comparison tree

Note that other stuff 
happens during the sorting 
algorithm, we just aren’t 
showing it in the tree

• The comparison tree must 
have n! (or more) leaves 
because a valid sorting 
algorithm must be able to 
get any of n! possible 
answers

• Comparison tree for sorting 
n items:

comparison
tree

abc...    bacd...                 cabd...

n! leaves

Time vs. Height
• The worst-case time for a 

sorting method must be ≥
the height of its 
comparison tree

The height corresponds to 
the worst-case number of 
comparisons
Each comparison takes Θ(1) 
time
The algorithm is doing more 
than just comparisons

• What is the minimum 
possible height for a binary 
tree with n! leaves?

Height ≥ log(n!) = Θ(n log n)

• This implies that any
comparison-based sorting 
algorithm must have a worst-
case time of Ω(n log n)

Note: this is a lower bound; 
thus, the use of big-Omega 
instead of big-O

Using the Lower Bound on Sorting

Claim: I have a PQ
Insert time: O(1)
GetMax time: O(1)

• True or false?

False (for general sets) 
because if such a PQ 
existed, it could be used to 
sort in time O(n)

Claim: I have a PQ
Insert time: O(loglog n)
GetMax time: O(loglog n)

• True or false?

False (for general sets) 
because it could be used to 
sort in time O(n loglog n)

True for items with priorities in 
range 1..n [van Emde Boas] 
(Note: such a set can be 
sorted in O(n) time)

Sorting in Linear Time
There are several sorting methods that take linear time

Counting Sort
• Sorts integers from a small range: [0..k] where k = O(n)

Radix Sort
• The method used by the old card-sorters
• Sorting time O(dn) where d is the number of “digits”

Others…

• How do these methods get around the Ω(n log n) lower 
bound?

They don’t use comparisons

Best Sorting Method?

• What sorting method works best?

QuickSort is best general-purpose sort
• But it’s not stable

MergeSort is a good choice if you need a stable sort

Counting Sort or Radix Sort can be best for some kinds 
of data


