Bounds
on Sorting

Lecture 14
CS211 - Fall 2005

Prelim Announcements

e Prelim 1
= Tonight 7:30 — 9:00pm
= Last names starting with
A-F are in HO 110

= Last names starting with
G-Z are in HO B14

* Grades will be available
tomorrow (Friday)

= This is the last day to drop a
course

* Office hours are available
before the exam

= Regularly scheduled
+ 11:00 - 12:00
.+ 1:25-2:15
* 3:00-4:00

= Extra
.+ 12:20-1:25

= Check course website for
latest info

More Announcements

* Using consultants
= Do not work in consulting
room after receiving help

* Work somewhere else so
other students can ask
questions

= Do not use consultants as
“human compilers”

* You are responsible for
testing your code on your
own

« Not incrementally with a
consultant

« ACSU Ultimate Coding
Challenge

Prizes: Xbox or Portable

Media Center

Saturday, October 15th,

2005 @ 10:00 am - 2:00 pm

Upson 319 (CSUG Lab)

FREE pizza and ACSU t-
shirts for all participants!

See 211 website for more
info

Sorting Algorithm Summary

* The ones we have discussed
= Insertion Sort
= Selection Sort
= Merge Sort
= Quick Sort

« Other sorting algorithms
Heap Sort (come back to this)
Shell Sort (in text)

Bubble Sort (nice name)
Radix Sort

Bin Sort

Counting Sort

¢ Why so many? Do Computer
Scientists have some kind of
sorting fetish or what?

Stable sorts: Ins, Sel, Mer

Worst-case O(n log n): Mer, Hea

Expected-case O(n log n):

Mer, Hea, Qui

Best for nearly-sorted sets: Ins

No extra space needed: Ins, Sel, Hea

Fastest in practice: Qui
Least data movement: Sel

Programming Problem Strategies

+ Goal: Make it easier to solve
programming problems

* Basic Data Structures
= Irecognize this; I can use this
well-known data structure
= Examples: Stack, Queue,
Priority Queue, Dictionary

* Algorithm Design Methods
= I can design an algorithm to
solve this
= Examples: Divide & Conquer,
Greedy, Dynamic
Programming

* Problem Reductions

= [can change this problem into
another with a known solution

= Or, I can show thata
reasonable algorithm is most-
likely impossible

= Examples: reduction to network
flow, NP-complete problems

Recall: Analysis of MergeSort

» Time for Merge is O(n)
where n is the number of
elements being merged

* Time for MergeSort

T(n) = 2T(n/2) + O(n)
and T(1) = O(1)

Recurrence can be simplified
to T(n) =2T(n/2) + n

Solution is T(n) = O(n log n)

* One solution method for
this recurrence
Can divide by n to get

T(n)/n=T(/2)(/2) + 1
Define S(n) = T(n)/n
S(n) =S(n/2) + 1

Easy to see that
S(n)=2+logn

Thus T(n) = n(2 + log n) or
T(n) = O(n log n)

Solving Recurrences

Recurrences are important when
using Divide & Conquer to
design an algorithm

Solution techniques:

¢ Can sometimes change
variables to make it into a
simpler recurrence

* Make a guess then prove the
guess correct by induction

* Build a recursion tree and use it

to determine solution
* Can use the Master Method

= A “cookbook” scheme that
handles many common
recurrences

To solve
compare with

Solution is T(n) = O(f(n))

if f(n) grows more rapidly
Solution is T(n) = O(n'°z2)

if n'°%¢ grows more rapidly
Solution is T(n) = O(f(n) log n)
if both grow at same rate

Not an exact statement of the
theorem [f(n) must be “well-

behaved”]

See text for a similar theorem

Recurrence Relation Examples

* T(n)=T(n-1)+1 [Linear Search]
= T(n)=O(n)

e T(n)=T(n-1)+n [QuickSort worst-case]
= T(n)=0(n?)

e T(n)=Tm/2)+1 [Binary Search]
= T(n)=O(log n)

* T(n)=T@n/2)+n
= T(n)=0(n)

* T(n)=2Tn/2)+n [MergeSort]
= T(n)=O(n log n)

Recurrences & CS211

* Solving recurrences is like integration

= No general techniques work for all recurrences

» For CS 211, we just expect you to remember a few

common patterns

Lower Bounds on Sorting: Goals

* Goal: Determine the « But how can we prove
minimum time required to anything about the best
sort n items possible algorithm?

* Note: we want worst-case
not best-case time * We want to find
characteristics that are

= Best-case doesn’t tell us ;
common to all sorting

much; for example, we

know Insertion Sort takes algorithms

O(n) time on already-sorted

input = Let’s try looking at
= We want to determine the comparisons

worst-case time for the best-
possible algorithm

Comparison Trees

* Any algorithm can be
“unrolled” to show the
comparisons that are
(potentially) performed

Example

for (int i = 0; i < x.length; i++)

if (x[i] < 0) x[i] = - x[i];

0 < length @

« In general, you get a
comparison tree

If the algorithm fails to
terminate for some input
then the comparison tree is
infinite

The height of the
comparison tree represents
the worst-case number of
comparisons for that
algorithm

Lower Bounds on Sorting: Notation

* Suppose we want to sort the items in the array BJ]

* Let’s name the items
= a, is the item initially residing in B[1], a, is the item
initially residing in B[2], etc.
= In general, a; is the item initially stored in BJ[i]

* Rule: an item keeps its name forever, but it can
change its location

= Example: after swap(B,1,5), a, is stored in B[5] and a;
is stored in B[1]

The Answer to a Sorting Problem

* An answer for a sorting problem tells where each of the a;
resides when the algorithm finishes

* The correct answer depends on the actual values
represented by each a;

» Since we don’t know what the a; are going to be, it has to
be possible to produce each permutation of the a;

» For a sorting algorithm to be valid it must be possible for
that algorithm to give any of n! potential answers

Comparison Tree for Sorting

« Every sorting algorithm has

a corresponding
comparison tree
= Note that other stuff
happens during the sorting
algorithm, we just aren’t
showing it in the tree
* The comparison tree must
have n! (or more) leaves
because a valid sorting
algorithm must be able to
get any of n! possible
answers

» Comparison tree for sorting
n items:

N

n! leaves

Time vs. Height

* The worst-case time for a
sorting method must be >

* What is the minimum
possible height for a binary

Using the Lower Bound on Sorting

Claim: I have a PQ

the height of its tree with n! leaves?
comparison tree Height > log(n!) = ©(n log n)
= The height corresponds to

= Insert time: O(1)
= GetMax time: O(1)

* True or false?

Claim: I have a PQ

= Insert time: O(loglog n)

= GetMax time: O(loglog n)
* True or false?

the worst-case number of

« This implies that any

comparisons comparison-based sorting

= Each comparison takes ©(1) algorithm must have a worst-
time case time of Q(n log n)

= The algorithm is doing more = Note: this is a lower bound;

thus, the use of big-Omega
instead of big-O

than just comparisons

False (for general sets)
because if such a PQ
existed, it could be used to

False (for general sets)
because it could be used to
sort in time O(n loglog n)

sort in time O(n)

Sorting in Linear Time

There are several sorting methods that take linear time
= Counting Sort
« Sorts integers from a small range: [0..k] where k = O(n)
= Radix Sort
* The method used by the old card-sorters
« Sorting time O(dn) where d is the number of “digits”
= Others...

» How do these methods get around the Q(n log n) lower
bound?

= They don’t use comparisons

Best Sorting Method?

» What sorting method works best?

= QuickSort is best general-purpose sort
« But it’s not stable

= MergeSort is a good choice if you need a stable sort

= Counting Sort or Radix Sort can be best for some kinds
of data

