

More Announcements

- Using consultants
- Do not work in consulting room after receiving help
- Work somewhere else so other students can ask questions
- Do not use consultants as "human compilers"
- You are responsible for testing your code on your own
- Not incrementally with a consultant
- ACSU Ultimate Coding Challenge
- Prizes: Xbox or Portable Media Center
- Saturday, October 15th, 2005@10:00 am - 2:00 pm
- Upson 319 (CSUG Lab)
- FREE pizza and ACSU tshirts for all participants!
- See 211 website for more info

Prelim Announcements

- Prelim 1
- Tonight 7:30 - 9:00pm
- Last names starting with A-F are in HO 110
- Last names starting with G-Z are in HO B14
- Grades will be available tomorrow (Friday)
- This is the last day to drop a course
- Office hours are available before the exam
- Regularly scheduled - 11:00-12:00
- 1:25-2:15
- 3:00-4:00
- Extra
- 12:20-1:25
- Check course website for latest info

Sorting Algorithm Summary

- The ones we have discussed
- Insertion Sort
- Selection Sort
- Merge Sort
- Quick Sort
- Other sorting algorithms
- Heap Sort (come back to this)
- Shell Sort (in text)
- Bubble Sort (nice name)
- Radix Sort
- Bin Sort
- Counting Sort

Programming Problem Strategies

- Goal: Make it easier to solve programming problems
- Basic Data Structures
- I recognize this; I can use this well-known data structure
- Examples: Stack, Queue, Priority Queue, Dictionary
- Algorithm Design Methods
- I can design an algorithm to solve this
- Examples: Divide \& Conquer, Greedy, Dynamic Programming
- Problem Reductions
- I can change this problem into another with a known solution
- Or, I can show that a reasonable algorithm is mostlikely impossible
- Examples: reduction to network flow, NP-complete problems

Recall: Analysis of MergeSort

- Time for Merge is $\mathrm{O}(\mathrm{n})$ where n is the number of elements being merged
- Time for MergeSort
$\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}(\mathrm{n})$
and $\mathrm{T}(1)=\mathrm{O}(1)$
Recurrence can be simplified to $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}$

Solution is $T(n)=O(n \log n)$

- One solution method for this recurrence
Can divide by n to get
$\mathrm{T}(\mathrm{n}) / \mathrm{n}=\mathrm{T}(\mathrm{n} / 2) /(\mathrm{n} / 2)+1$

Define $\mathrm{S}(\mathrm{n})=\mathrm{T}(\mathrm{n}) / \mathrm{n}$
$\mathrm{S}(\mathrm{n})=\mathrm{S}(\mathrm{n} / 2)+1$

Easy to see that
$S(n)=2+\log n$

Thus $T(n)=n(2+\log n)$ or $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Solving Recurrences

Recurrences are important when using Divide \& Conquer to
design an algorithm

Solution techniques:

- Can sometimes change variables to make it into a simpler recurrence
- Make a guess then prove the guess correct by induction
- Build a recursion tree and use it to determine solution
- Can use the Master Method
- A "cookbook" scheme that handles many common recurrences

To solve $T(n)=a T(n / b)+f(n)$ compare $f(n)$ with $n^{\log _{b} a}$

- Solution is $T(n)=O(f(n))$ if $\mathrm{f}(\mathrm{n})$ grows more rapidly
- Solution is $T(n)=O\left(n^{\log _{b} a}\right)$ if $\mathrm{n}^{\log _{b} a}$ grows more rapidly
- Solution is $T(n)=O(f(n) \log n)$ if both grow at same rate
- Not an exact statement of the theorem [f(n) must be "wellbehaved"]
- See text for a similar theorem

Recurrence Relation Examples

- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+1 \quad$ [Linear Search]
- $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n})$
- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{n} \quad$ [QuickSort worst-case]
- $\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{2}\right)$
- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 2)+1 \quad$ [Binary Search $]$
- $\mathrm{T}(\mathrm{n})=\mathrm{O}(\log \mathrm{n})$
- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 2)+\mathrm{n}$
- $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n})$
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n} \quad$ [MergeSort]
- $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Recurrences \& CS211

- Solving recurrences is like integration
- No general techniques work for all recurrences
- For CS 211, we just expect you to remember a few common patterns

Lower Bounds on Sorting: Goals

- Goal: Determine the minimum time required to sort n items
- Note: we want worst-case not best-case time
- Best-case doesn't tell us much; for example, we know Insertion Sort takes $\mathrm{O}(\mathrm{n})$ time on already-sorted input
- We want to determine the worst-case time for the bestpossible algorithm
- But how can we prove anything about the best possible algorithm?
- We want to find characteristics that are common to all sorting algorithms
- Let's try looking at comparisons

Comparison Trees

- In general, you get a comparison tree
- If the algorithm fails to terminate for some input then the comparison tree is infinite
- The height of the comparison tree represents the worst-case number of comparisons for that algorithm

Lower Bounds on Sorting: Notation

- Suppose we want to sort the items in the array B[]
- Let's name the items
- a_{1} is the item initially residing in $\mathrm{B}[1], \mathrm{a}_{2}$ is the item initially residing in $\mathrm{B}[2]$, etc.
- In general, a_{i} is the item initially stored in $\mathrm{B}[\mathrm{i}]$
- Rule: an item keeps its name forever, but it can change its location
- Example: after $\operatorname{swap}(\mathrm{B}, 1,5), \mathrm{a}_{1}$ is stored in $\mathrm{B}[5]$ and a_{5} is stored in B [1]

The Answer to a Sorting Problem

- An answer for a sorting problem tells where each of the a_{i} resides when the algorithm finishes
- How many answers are possible?
- The correct answer depends on the actual values represented by each a_{i}
- Since we don't know what the a_{i} are going to be, it has to be possible to produce each permutation of the a_{i}
- For a sorting algorithm to be valid it must be possible for that algorithm to give any of n ! potential answers

Comparison Tree for Sorting

- Every sorting algorithm has - Comparison tree for sorting a corresponding comparison tree
- Note that other stuff
happens during the sorting algorithm, we just aren't showing it in the tree
- The comparison tree must have n ! (or more) leaves because a valid sorting algorithm must be able to get any of n ! possible answers

Time vs. Height

- The worst-case time for a sorting method must be \geq the height of its comparison tree
- The height corresponds to the worst-case number of comparisons
- Each comparison takes $\Theta(1)$ time
- What is the minimum possible height for a binary tree with n ! leaves? Height $\geq \log (\mathrm{n}!)=\Theta(\mathrm{n} \log \mathrm{n})$
- This implies that any comparison-based sorting algorithm must have a worstcase time of $\Omega(n \log n)$
- Note: this is a lower bound; thus, the use of big-Omega instead of big-O

Using the Lower Bound on Sorting

Claim: I have a PQ

- Insert time: $O(1)$
- GetMax time: O(1)
- True or false?

False (for general sets) because if such a PQ existed, it could be used to sort in time $\mathrm{O}(\mathrm{n})$

Claim: I have a PQ

- Insert time: O($\log \log n)$
- GetMax time: O(loglog n$)$
- True or false?

False (for general sets) because it could be used to sort in time $O(n \log \log n)$
True for items with priorities in range 1..n [van Emde Boas] (Note: such a set can be sorted in $\mathrm{O}(\mathrm{n})$ time)

Sorting in Linear Time

There are several sorting methods that take linear time

- Counting Sort
- Sorts integers from a small range: $[0 . \mathrm{k}]$ where $\mathrm{k}=\mathrm{O}(\mathrm{n})$
- Radix Sort
- The method used by the old card-sorters
- Sorting time $\mathrm{O}(\mathrm{dn})$ where d is the number of "digits"
- Others...
- How do these methods get around the $\Omega(\mathrm{n} \log \mathrm{n})$ lower bound?
- They don't use comparisons

Best Sorting Method?

- What sorting method works best?
- QuickSort is best general-purpose sort
- But it's not stable
- MergeSort is a good choice if you need a stable sort
- Counting Sort or Radix Sort can be best for some kinds of data

