
1

Sorting

Lecture 13
CS211 – Fall 2005

InsertionSort
// Code for sorting a[ ], an array of int
for (int i = 1; i < a.length; i++) {

int temp = a[ i ];
int k = i;
for (; 0 < k && temp < a[k–1]; k – –)

a[k] = a[k–1];
a[k] = temp;

}

• Many people sort cards this way
• Invariant: everything to left of i 

is already sorted
• Works especially well when 

input is nearly sorted

• Runtime
Worst-case

• O(n2)
• Consider reverse-sorted input

Best-case
• O(n)
• Consider sorted input

Expected-case
• O(n2)
• Can count expected number 

of inversions
Pair a sequence with its 
reverse
The average number of 
inversions is n(n-1)/4
See text

SelectionSort
• To sort an array of size n: 

Examine all elements from 0 to 
(n-1); find the smallest one and 
swap it with the 0th element of 
the array
Examine all elements from 1 to 
(n-1); find the smallest in that 
part of the array and swap it 
with the 1st element of the array
In general, at the ith step, 
examine array elements from i 
to (n-1); find the smallest 
element in that range, and 
exchange it with the ith element 
of the array

• This is the other common way 
for people to sort cards

• Runtime
Worst-case

• O(n2)
Best-case

• O(n2)
Expected-case

• O(n2)

Divide & Conquer?
• It often pays to

1) break the problem into smaller subproblems,
2) solve the subproblems separately, and then
3) assemble a final solution

• This technique is called Divide-and-Conquer
• Caveat: the partitioning and assembly processes 

cannot be too expensive
• Can we apply this approach to sorting?

MergeSort
• Quintessential divide-and-

conquer algorithm

• Divide array into equal 
parts, sort each part, then 
merge

• Three questions:

Q1: How do we divide array 
into two equal parts?
A1: Use indices into array

Q2: How do we sort the 
parts?
A2: call MergeSort 
recursively!

Q3: How do we merge the 
sorted subarrays?
A3: Have to write some 
(easy) code

Merging Sorted Arrays A and B 
• Create an array C of size = size of A + size of B
• Keep three indices:

ai into A
bi into B
ci into C

• Initialize all three indices to 0 (start of each array)
• Compare element A[ai] with B[bi], and move the smaller 

element into C[ci]  
• Increment the appropriate indices (ai or bi),  and ci
• If either A or B is empty, copy remaining elements from the 

other array (B or A, respectively) into C
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Merging Sorted Arrays 

C = merged array

B

A
3    4    6    7    7    7

3    6    7    8   12

4    7    7    9   10ci

ai

bi

MergeSort Analysis
• Outline (text has detailed 

code)
Split array into two halves
Recursively sort each half
Merge the two halves

• Merge = combine two sorted 
arrays to make a single sorted 
array

Rule: Always choose the 
smallest item
Time: O(n) where n is the 
combined size of the two arrays

• Runtime recurrence
Let T(n) be the time to sort an 
array of size n
T(n) ≤ 2T(n/2) + cn
T(1) = c

• Can show by induction that 
T(n) = O(n log n)

• Alternately, can show 
T(n) = O(n log n) by looking at 
tree of recursive calls

MergeSort Notes
• Asymptotic complexity: O(n log n)

Much faster than O(n2)

• Disadvantage
Need extra storage for temporary arrays
In practice, this can be a serious disadvantage, even 
though MergeSort is asymptotically optimal for sorting
Can do MergeSort in place, but this is very tricky (and it 
slows down the algorithm significantly)

• Are there good sorting algorithms that do not use 
so much extra storage?

Yes: QuickSort

QuickSort
• Intuitive idea

Given an array A to sort, choose a pivot value p
Partition A into two subarrays, AX and AY

• AX contains only elements ≤ p
• AY contains only elements ≥ p

Sort subarrays AX and AY separately
Concatenate (not merge!) sorted AX and AY to produce 
sorted A

• Note that concatenation is easier than merging

20 31 24 19 45 56 4 65 5 72 14 99

pivot partition

5 19
14

4

31
72

56

65 45

24

99

204      5       14     19 24      31    45     56     65     72     99

QuickSort QuickSort

4      5       14     19     20     24      31    45     56     65     72     99

concatenate

QuickSort Questions
• Key problems

How should we choose a 
pivot?
How do we partition an 
array in place?

• Partitioning in place
Can be done in O(n) time
See next few slides

• Choosing a pivot
Ideal pivot is median since 
this splits array in half
Unfortunately, computing 
the median is expensive
Popular heuristics

• Use first value in array as 
pivot (this is a bad choice)

• Use middle value in array 
as pivot

• Use median of first, last, 
and middle values in array 
as pivot
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In-Place Partitioning

How can we move all the blues to the left of all the reds?

1. Keep two indices, LEFT and RIGHT
2. Initialize LEFT at start of array and RIGHT at end of array
3. Invariant: all elements to left of LEFT are blue

all elements to right of RIGHT are red
4. Keep advancing indices until they pass, maintaining invariant

Now neither LEFT nor RIGHT can advance and maintain invariant.
We can swap red and blue pointed to by LEFT and RIGHT indices.
After swap, indices can continue to advance until next conflict.

swap

swap

swap

• Once indices cross partitioning is done
• If you replace blue with ≤p and red with ≥p, this is

exactly what we need for QuickSort partitioning
• Notice that after partitioning, array is partially sorted
• Recursive calls on partitioned subarrays will sort subarrays
• No need to copy/move arrays since we partitioned in place

QuickSort Analysis
• Runtime analysis (worst-case)

Partition can work badly producing this:
Runtime recurrence

• T(n) = T(n–1) + n
This can be solved to show worst-case T(n) = O(n2)

• Runtime analysis (expected-case)
More complex recurrence (see text)
Can solve to show expected T(n) = O(n log n)

• Can improve constant factor by avoiding QuickSort on 
small sets

Switch to InsertionSort (for example) for sets of size, say, 8 or less
Definition of small depends on language, machine, etc.

p > p

Sorting Algorithm Summary
• The ones we have discussed

Insertion Sort
Selection Sort
Merge Sort
Quick Sort

• Other sorting algorithms
Heap Sort (come back to this)
Shell Sort (in text)
Bubble Sort (nice name)
Radix Sort
Bin Sort
Counting Sort

• Why so many?  Do Computer 
Scientists have some kind of 
sorting fetish or what?

Stable sorts: Ins, Sel, Mer
Worst-case O(n log n): Mer, Hea
Expected-case O(n log n): 
Mer, Hea, Qui
Best for nearly-sorted sets: Ins
No extra space needed: Ins, Sel, Hea
Fastest in practice: Qui
Least data movement: Sel

Lower Bounds on Sorting: Goals
• Goal: Determine the 

minimum time required to 
sort n items

• Note: we want worst-case
not best-case time

Best-case doesn’t tell us 
much; for example, we 
know Insertion Sort takes 
O(n) time on already-sorted 
input
We want to determine the 
worst-case time for the best-
possible algorithm

• But how can we prove 
anything about the best 
possible algorithm?

We want to find 
characteristics that are 
common to all sorting 
algorithms

Let’s try looking at 
comparisons
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Comparison Trees
• Any algorithm can be 

“unrolled” to show the 
comparisons that are 
(potentially) performed

Example
for (int i = 0; i < x.length; i++)

if (x[i] < 0) x[i] = – x[i];

• In general, you get a 
comparison tree

• If the algorithm fails to 
terminate for some input 
then the comparison tree is 
infinite

• The height of the 
comparison tree represents 
the worst-case number of 
comparisons for that 
algorithm

0 < length x[1] < 0

x[0] < 0

1 < length

2 < length

x[2] < 0

Lower Bounds on Sorting: Notation
• Suppose we want to sort the items in the array B[ ]

• Let’s name the items
a1 is the item initially residing in B[1], a2 is the item 
initially residing in B[2], etc.
In general, ai is the item initially stored in B[i]

• Rule: an item keeps its name forever, but it can 
change its location

Example: after swap(B,1,5), a1 is stored in B[5] and a5
is stored in B[1]

The Answer to a Sorting Problem
• An answer for a sorting problem tells where each of the ai

resides when the algorithm finishes
• How many answers are possible?

• The correct answer depends on the actual values 
represented by each ai

• Since we don’t know what the ai are going to be, it has to 
be possible to produce each permutation of the ai

• For a sorting algorithm to be valid it must be possible for 
that algorithm to give any of n! potential answers

Comparison Tree for Sorting
• Every sorting algorithm has 

a corresponding 
comparison tree

Note that other stuff 
happens during the sorting 
algorithm, we just aren’t 
showing it in the tree

• The comparison tree must 
have n! (or more) leaves 
because a valid sorting 
algorithm must be able to 
get any of n! possible 
answers

• Comparison tree for sorting 
n items:

comparison
tree

abc...    bacd...                 cabd...

n! leaves

Time vs. Height
• The worst-case time for a 

sorting method must be ≥
the height of its 
comparison tree

The height corresponds to 
the worst-case number of 
comparisons
Each comparison takes Θ(1) 
time
The algorithm is doing more 
than just comparisons

• What is the minimum 
possible height for a binary 
tree with n! leaves?

Height ≥ log(n!) = Θ(n log n)

• This implies that any
comparison-based sorting 
algorithm must have a worst-
case time of Ω(n log n)

Note: this is a lower bound; 
thus, the use of big-Omega 
instead of big-O

Using the Lower Bound on Sorting

Claim: I have a PQ
Insert time: O(1)
GetMax time: O(1)

• True or false?

False (for general sets) 
because if such a PQ 
existed, it could be used to 
sort in time O(n)

Claim: I have a PQ
Insert time: O(loglog n)
GetMax time: O(loglog n)

• True or false?

False (for general sets) 
because it could be used to 
sort in time O(n loglog n)

True for items with priorities in 
range 1..n [van Emde Boas] 
(Note: such a set can be 
sorted in O(n) time)
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Sorting in Linear Time
There are several sorting 

methods that take linear 
time

• Counting Sort
Sorts integers from a small 
range: [0..k] where k = O(n)

• Radix Sort
The method used by the old 
card-sorters
Sorting time O(dn) where d 
is the number of “digits”

• How do these methods get 
around the Ω(n log n) 
lower bound?

They don’t use comparisons

• What sorting method works 
best?

QuickSort is best general-
purpose sort (but it’s not 
stable)
Counting Sort or Radix Sort 
can be best for some kinds 
of data


