

Searching & an Introduction to Asymptotic Complexity

Lecture 12 CS211 – Fall 2005

Announcements

- · Prelim 1
 - Occurs at 7:30pm on Thursday (Oct 13) after Fall Break (i.e., 9 days from today)
 - Topics: all material from August & September
 - Includes Interfaces & Comparable
 - Not Searching & Sorting & Asymptotic Complexity (this week's topics)
- · Exam conflicts
 - Email Kelly Patwell ASAP
 - We have a late-start exam (at 8:30pm) for those observing Yom Kippur
 - Email Kelly if you need to take the late-start exam

- · Prelim 1 review sessions
 - Wed, Oct 12
 - · Two identical sessions
 - 7:30 9:00pm
 - 9:00 10:30pm
 - See Exams on course website for more information
 - Individual appointments are available if you cannot attend the review sessions (email one TA to arrange appointment)
- Old exams are available for review on the course website
- Sections for Wed, Oct 12, are cancelled
 - This week's sections are the last before Prelim 1

What Makes a Good Algorithm?

- Suppose you have two possible algorithms or data structures that basically do the same thing; which is better?
- Well... what do we mean by better?
 - Faster?
 - Less space?
 - Easier to code?
 - Easier to maintain?Required for homework?
- How do we measure time and space for an algorithm?

Sample Problem: Searching

- Determine if a sorted array of integers contains a given integer
- 1st solution: Linear Search (check each element)

```
 \begin{split} & \text{static boolean find (int[\ ]\ a, int item)}\ \{ \\ & \text{for (int } i=0;\ i< a.length;\ i++)\ \{ \\ & \text{if (a[i]}== item)\ return\ true;} \\ & \} \\ & \text{return false;} \\ & \} \\ \end{aligned}
```

• 2nd solution: Binary Search

```
static boolean find (int[]] a, int item) {
  int low = 0;
  int high = a.length - 1;
  while (low <= high) {
    int mid = (low+high)/2;
    if (a[mid] < item)
        low = mid+1;
    else if (item < a[mid])
        high = mid - 1;
    else return true;
    }
  return false;
}
```

Linear Search vs. Binary Search

- Which one is better?
 - Linear Search is easier to program
 - But Binary Search is faster... isn't it?
- How do we measure to show that one is faster than the other
 - Experiment?
 - Proof?
 - But which inputs do we use?

- Simplifying assumption #1: Use the *size* of the input
- Use the *size* of the input rather than the input itself
 - For our sample search problem, the input size is n+1 where n is the array size
- Simplifying assumption #2: Count the number of "basic steps" rather than computing exact times

One Basic Step = One Time Unit

- · Basic step:
 - input or output of a scalar value
 - accessing the value of a scalar variable, array element, or field of an object
 - assignment to a variable, array element, or field of an object
 - a single arithmetic or logical operation
 - method invocation (not counting argument evaluation and execution of the method body)
- For a conditional, we count number of basic steps on the branch that is executed
- For a loop, we count number of basic steps in loop body times the number of iterations
- For a method, we count number of basic steps in method body (including steps needed to prepare stack-frame)

Runtime vs. Number of Basic Steps

- But isn't this cheating?
 - The runtime is not the same as the number of basic steps
 - Time per basic step varies depending on computer, on compiler, on details of code...
- Well... yes, it is cheating in a way
 - But the number of basic steps is proportional to the actual runtime

- Which is better?
 - n or n² time?
 - 100 n or n² time?
 - 10,000 n or n² time?
- As n gets large, multiplicative constants become less important
- Simplifying assumption #3: Multiplicative constants aren't important

Using Big-O to Hide Constants

• Roughly, f(n) = O(g(n)) means that f(n) grows like g(n) or slower

Definition: O(g(n)) is a set; f(n) is a member of this set if and only if there exist constants c and N such that $0 \le f(n) \le c$ g(n), for all n≥N

• We should write $f(n) \in O(g(n))$

• But by convention, we write f(n) = O(g(n))

Claim: $n^2 + n = O(n^2)$

We know $n \le n^2$ for $n \ge 1$

So $n^2 + n \le 2$ n^2 for $n \ge 1$

So by definition, $n^2 + n = O(n^2)$

for c=2 and N=1

A Graphical View of Big-O Notation c g(n)• To prove that f(n) = O(g(n)):
• Find an N and c such that $0 \le f(n) \le c g(n)$, for all $n \ge N$

• We call the pair (c, N) a witness pair for proving that f(n) = O(g(n))

Big-O Examples

Claim: $100 \text{ n} + \log \text{ n} = O(\text{n})$

 $\underline{\text{Claim}}: \log_{B} n = O(\log n)$

We know log $n \le n$ for $n \ge 1$

Let $k = \log n$

So $100 \text{ n} + \log \text{ n} \le 101 \text{ n}$

for $n \ge 1$

Then $n = 2^k$ and (the subscripts are too messy;

switch to board)

 $100 \text{ n} + \log \text{ n} = O(\text{n})$

So by definition,

for c=101 and N=1

Question: Which grows

faster: sqrt(n) or log n?

Simple Big-O Examples

- Let $f(n) = 3n^2 + 6n 7$
 - Claim $f(n) = O(n^2)$
 - Claim $f(n) = O(n^3)$
 - Claim $f(n) = O(n^4)$
 - ...
- $g(n) = 4n \log n + 34 n 89$
 - Claim $g(n) = O(n \log n)$
 - Claim $g(n) = O(n^2)$
- $h(n) = 20 * 2^n + 40$
 - Claim h(n) = O(2ⁿ)
- a(n) = 34
 - Claim a(n) = O(1)

• Only the *leading* term (the term that grows most rapidly) matters

Problem-Size Examples

 Suppose we have a computing device that can execute 1000 operations per second; how large a problem can we solve?

	1 second	1 minute	1 hour
n	1000	60,000	3,600,000
n log n	140	4893	200,000
n ²	31	244	1897
$3n^2$	18	144	1096
n ³	10	39	153
2 ⁿ	9	15	21

Commonly Seen Time Bounds

O(1)	constant	excellent
O(log n)	logarithmic	excellent
O(n)	linear	good
O(n log n)		pretty good
O(n ²)	quadratic	OK
O(n ³)	cubic	maybe OK
O(2 ⁿ)	exponential	too slow

Related Notations

· Big-Omega

· Big-Theta

Definition: f(n) is a member of the set $\Omega(g(n))$ if there exists constants c and N such that $0 \le c \ g(n) \le f(n)$, for all $n \ge N$

Definition: f(n) is a member of the set $\Theta(g(n))$ if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Worst-Case/Expected-Case Bounds

- · We can't possibly determine time bounds for all possible inputs of size n
- · Simplifying assumption #4: Determine number of steps for either
 - worst-case or
 - expected-case

- · Worst-case
 - Determine how much time is needed for the worst possible input of size n
- · Expected-case
 - Determine how much time is needed on average for all inputs of size n

Our Simplifying Assumptions

- 1. Use the size of the input rather than the input itself
- 2. Count the number of "basic steps" rather than computing exact times
- 3. Multiplicative constants aren't important (i.e., use big-O notation)
- 4. Determine number of steps for either
 - worst-case or
 - expected-case

Worst-Case Analysis of Searching

• Linear Search (check each element)

```
static boolean find (int[] a, int item) {
  for (int i = 0; i < a.length; i++) {
          if (a[i] == item) return true;
  return false;
```

For Linear Search, worstcase time is O(n) For Binary Search, worst-

case time is O(log n)

· Binary Search

```
static boolean find (int[] a, int item) {
  int high = a.length - 1;
  while (low <= high) {
           int mid = (low+high)/2;
           if (a[mid] < item)
                     low = mid+1;
           else if (item \leq a[mid])
                     high = mid - 1;
           else return true;
  return false;
```

Analysis of Matrix Multiplication

Code for multiplying n-by-n matrices A and B:

```
for (i = 0; i<n; i++)
  for (j = 0; j < n; j++)
      for (k = 0; k < n; k++)
         C[i][j] = C[i][j] + A[i][k] * B[k][j];
```

- · By convention, matrix problems are measured in terms of n, the number of rows and columns
 - Note that the input size is really 2n2, not n
 - Worst-case time is O(n³) · Expected-case time is also $O(n^3)$

Remarks

- Once you get the hang of this, you can quickly zero in on what is relevant for determining asymptotic complexity
 - For example, you can usually ignore everything that is not in the innermost loop. Why?
- · Main difficulty:
 - Determining runtime for recursive programs

Summary

- Asymptotic complexity
 - Used to measure of time (or space) required by an algorithm
 - Measure of the *algorithm*, not the *problem*
- · Searching array
 - Linear search: O(n) worst-case time
 - Binary search: O(log n) worst-case time
- Matrix operations:
 - Note: n = number-of-rows = number-of-columns
 - Matrix-vector product: O(n²) worst-case time
 - Matrix-matrix multiplication: O(n³) worst-case time

Why Bother with Runtime Analysis?

- Computers are so fast these days that we can do whatever we want using just simple algorithms and data structures, can't we?
- Well...not really; datastructure/algorithm improvements can be a *very big* win
- · Scenario:
 - A runs in n² msec
 - A' runs in n²/10 msec
 - B runs in 10 n log n msec

- Problem of size n=103
 - A: 10³ sec ≈ 17 minutes
 - A': 10² sec ≈ 1.7 minutes
 - B: 10² sec ≈ 1.7 minutes
- Problem of size n=106
 - A: 10⁹ sec ≈ 30 years
 - A': 10⁸ sec ≈ 3 years
 - B: 2 x 10⁵ sec ≈ 2 days
- $1 \text{ day} = 86,400 \text{ sec} \approx 10^5 \text{ sec}$
- $1,000 \text{ days} \approx 3 \text{ years}$

Limitations of Runtime Analysis

- Big-O can hide a large constant
 - Example: Selection
 - Example: small problems
- The specific problem you want to solve may not be the worst case
 - Example: Simplex method for linear programming
- Your program may not be run often enough to make analysis worthwhile
 - Example: one-shot vs. every day
- You may be analyzing and improving the wrong part of the program
 - Very common situation
 - Should use *profiling* tools