
1

Searching & an
Introduction to

Asymptotic
Complexity

Lecture 12
CS211 – Fall 2005

Announcements
• Prelim 1

Occurs at 7:30pm on Thursday
(Oct 13) after Fall Break (i.e., 9
days from today)
Topics: all material from
August & September

• Includes Interfaces &
Comparable

• Not Searching & Sorting &
Asymptotic Complexity (this
week’s topics)

• Exam conflicts
Email Kelly Patwell ASAP
We have a late-start exam (at
8:30pm) for those observing
Yom Kippur

• Email Kelly if you need to
take the late-start exam

• Prelim 1 review sessions
Wed, Oct 12
Two identical sessions

• 7:30 – 9:00pm
• 9:00 – 10:30pm

See Exams on course website
for more information
Individual appointments are
available if you cannot attend
the review sessions (email one
TA to arrange appointment)

• Old exams are available for
review on the course website

• Sections for Wed, Oct 12, are
cancelled

This week's sections are the last
before Prelim 1

What Makes a Good Algorithm?
• Suppose you have two possible algorithms or data

structures that basically do the same thing; which is better?

• Well… what do we mean by better?
Faster?
Less space?
Easier to code?
Easier to maintain?
Required for homework?

• How do we measure time and space for an algorithm?

Sample Problem: Searching
• Determine if a sorted array

of integers contains a given
integer

• 1st solution: Linear Search
(check each element)

static boolean find (int[] a, int item) {
for (int i = 0; i < a.length; i++) {

if (a[i] == item) return true;
}

return false;
}

• 2nd solution: Binary
Search

static boolean find (int[] a, int item) {
int low = 0;
int high = a.length - 1;
while (low <= high) {

int mid = (low+high)/2;
if (a[mid] < item)

low = mid+1;
else if (item < a[mid])

high = mid - 1;
else return true;
}

return false;
}

Linear Search vs. Binary Search
• Which one is better?

Linear Search is easier to
program
But Binary Search is
faster… isn’t it?

• How do we measure to
show that one is faster than
the other

Experiment?
Proof?
But which inputs do we use?

• Simplifying assumption #1:
Use the size of the input
rather than the input itself

For our sample search
problem, the input size is
n+1 where n is the array size

• Simplifying assumption #2:
Count the number of “basic
steps” rather than
computing exact times

One Basic Step = One Time Unit
• Basic step:

input or output of a scalar value
accessing the value of a scalar
variable, array element, or field
of an object
assignment to a variable, array
element, or field of an object
a single arithmetic or logical
operation
method invocation (not
counting argument evaluation
and execution of the method
body)

• For a conditional, we count
number of basic steps on the
branch that is executed

• For a loop, we count number of
basic steps in loop body times
the number of iterations

• For a method, we count number
of basic steps in method body
(including steps needed to
prepare stack-frame)

2

Runtime vs. Number of Basic Steps
• But isn’t this cheating?

The runtime is not the same
as the number of basic steps
Time per basic step varies
depending on computer, on
compiler, on details of
code…

• Well… yes, it is cheating in
a way

But the number of basic
steps is proportional to the
actual runtime

• Which is better?
n or n2 time?
100 n or n2 time?
10,000 n or n2 time?

• As n gets large,
multiplicative constants
become less important

• Simplifying assumption #3:
Multiplicative constants
aren’t important

Using Big-O to Hide Constants
• Roughly, f(n) = O(g(n)) means

that f(n) grows like g(n) or slower

Definition: O(g(n)) is a set;
f(n) is a member of this set if and
only if there exist constants c and
N such that
0 ≤ f(n) ≤ c g(n), for all n≥N

• We should write
f(n) ∈ O(g(n))

• But by convention, we write
f(n) = O(g(n))

Claim: n2 + n = O(n2)

We know n ≤ n2 for n ≥1

So n2 + n ≤ 2 n2 for n ≥1

So by definition,
n2 + n = O(n2)

for c=2 and N=1

A Graphical View of Big-O Notation

• To prove that f(n) = O(g(n)):
Find an N and c such that
0 ≤ f(n) ≤ c g(n), for all n≥N
We call the pair (c, N) a witness pair for proving that f(n) = O(g(n))

c g(n)

f(n)

N

Big-O Examples
Claim: 100 n + log n = O(n)

We know log n ≤ n for n ≥ 1

So 100 n + log n ≤ 101 n
for n ≥ 1

So by definition,
100 n + log n = O(n)

for c=101 and N=1

Claim: logB n = O(log n)

Let k = log n

Then n = 2k and (the
subscripts are too messy;
switch to board)

Question: Which grows
faster: sqrt(n) or log n?

Simple Big-O Examples
• Let f(n) = 3n2 + 6n – 7

Claim f(n) = O(n2)
Claim f(n) = O(n3)
Claim f(n) = O(n4)
…

• g(n) = 4n log n + 34 n – 89
Claim g(n) = O(n log n)
Claim g(n) = O(n2)

• h(n) = 20 * 2n + 40
Claim h(n) = O(2n)

• a(n) = 34
Claim a(n) = O(1)

• Only the leading term (the
term that grows most
rapidly) matters

Problem-Size Examples
• Suppose we have a computing device that can

execute 1000 operations per second; how large a
problem can we solve?

211592n

1533910n3

1096144183n2

189724431n2

200,0004893140n log n
3,600,00060,0001000n

1 hour1 minute1 second

3

Commonly Seen Time Bounds

too slowexponentialO(2n)
maybe OKcubicO(n3)

OKquadraticO(n2)
pretty goodO(n log n)

goodlinearO(n)
excellentlogarithmicO(log n)
excellentconstantO(1)

Related Notations

• Big-Omega

Definition: f(n) is a member of the
set Ω(g(n)) if there exists
constants c and N such that
0 ≤ c g(n) ≤ f(n), for all n≥N

• Big-Theta

Definition: f(n) is a member of the
set Θ(g(n)) if
f(n) = O(g(n)) and f(n) = Ω(g(n))

Worst-Case/Expected-Case Bounds
• We can’t possibly

determine time bounds for
all possible inputs of size n

• Simplifying assumption #4:
Determine number of steps
for either

worst-case or
expected-case

• Worst-case
Determine how much time
is needed for the worst
possible input of size n

• Expected-case
Determine how much time
is needed on average for all
inputs of size n

Our Simplifying Assumptions
1. Use the size of the input rather than the input itself

2. Count the number of “basic steps” rather than computing
exact times

3. Multiplicative constants aren’t important
(i.e., use big-O notation)

4. Determine number of steps for either
worst-case or
expected-case

Worst-Case Analysis of Searching
• Linear Search (check each

element)
static boolean find (int[] a, int item) {

for (int i = 0; i < a.length; i++) {
if (a[i] == item) return true;
}

return false;
}

For Linear Search, worst-
case time is O(n)

For Binary Search, worst-
case time is O(log n)

• Binary Search

static boolean find (int[] a, int item) {
int low = 0;
int high = a.length - 1;
while (low <= high) {

int mid = (low+high)/2;
if (a[mid] < item)

low = mid+1;
else if (item < a[mid])

high = mid - 1;
else return true;
}

return false;

}

Analysis of Matrix Multiplication

Code for multiplying n-by-n
matrices A and B:

for (i = 0; i<n; i++)
for (j = 0; j < n; j++)

for (k = 0; k < n; k++)
C[i][j] = C[i][j] + A[i][k] * B[k][j];

• By convention, matrix
problems are measured in
terms of n, the number of
rows and columns

Note that the input size is
really 2n2, not n
Worst-case time is O(n3)
Expected-case time is also
O(n3)

4

Remarks
• Once you get the hang of this, you can quickly zero

in on what is relevant for determining asymptotic
complexity

For example, you can usually ignore everything that is
not in the innermost loop. Why?

• Main difficulty:
Determining runtime for recursive programs

Summary
• Asymptotic complexity

Used to measure of time (or space) required by an
algorithm
Measure of the algorithm, not the problem

• Searching array
Linear search: O(n) worst-case time
Binary search: O(log n) worst-case time

• Matrix operations:
Note: n = number-of-rows = number-of-columns
Matrix-vector product: O(n2) worst-case time
Matrix-matrix multiplication: O(n3) worst-case time

Why Bother with Runtime Analysis?
• Computers are so fast these

days that we can do
whatever we want using
just simple algorithms and
data structures, can’t we?

• Well…not really; data-
structure/algorithm
improvements can be a
very big win

• Scenario:
A runs in n2 msec
A’ runs in n2/10 msec
B runs in 10 n log n msec

• Problem of size n=103

A: 103 sec ≈ 17 minutes
A’: 102 sec ≈ 1.7 minutes
B: 102 sec ≈ 1.7 minutes

• Problem of size n=106

A: 109 sec ≈ 30 years
A’: 108 sec ≈ 3 years
B: 2 x 105 sec ≈ 2 days

1 day = 86,400 sec ≈ 105 sec
1,000 days ≈ 3 years

Algorithms for the Human Genome
• Human genome

= 3.5 billion nucleotides
~ 1 Gb

@ 1 base-pair instruction /
µsec

• n2 ⇒ 388445 years
• n log n ⇒ 30.824 hours
• n ⇒ 1 hour

Limitations of Runtime Analysis
• Big-O can hide a large

constant
Example: Selection
Example: small problems

• The specific problem you
want to solve may not be
the worst case

Example: Simplex method
for linear programming

• Your program may not be
run often enough to make
analysis worthwhile

Example:
one-shot vs. every day

• You may be analyzing and
improving the wrong part
of the program

Very common situation
Should use profiling tools

