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Searching & an 
Introduction to 

Asymptotic 
Complexity

Lecture 12
CS211 – Fall 2005

Announcements
• Prelim 1

Occurs at 7:30pm on Thursday 
(Oct 13) after Fall Break (i.e., 9 
days from today)
Topics: all material from 
August & September

• Includes Interfaces & 
Comparable

• Not Searching & Sorting & 
Asymptotic Complexity (this 
week’s topics)

• Exam conflicts
Email Kelly Patwell ASAP
We have a late-start exam (at 
8:30pm) for those observing 
Yom Kippur

• Email Kelly if you need to 
take the late-start exam

• Prelim 1 review sessions
Wed, Oct 12
Two identical sessions

• 7:30 – 9:00pm
• 9:00 – 10:30pm

See Exams on course website 
for more information
Individual appointments are 
available if you cannot attend 
the review sessions (email one
TA to arrange appointment)

• Old exams are available for 
review on the course website

• Sections for Wed, Oct 12, are 
cancelled

This week's sections are the last 
before Prelim 1

What Makes a Good Algorithm?
• Suppose you have two possible algorithms or data 

structures that basically do the same thing; which is better?

• Well… what do we mean by better?
Faster?
Less space?
Easier to code?
Easier to maintain?
Required for homework?

• How do we measure time and space for an algorithm?

Sample Problem: Searching
• Determine if a sorted array 

of integers contains a given 
integer

• 1st solution: Linear Search 
(check each element)

static boolean find (int[ ] a, int item) {
for (int i = 0; i < a.length; i++) {

if (a[i] == item) return true;
}

return false;
}

• 2nd solution: Binary 
Search

static boolean find (int[ ] a, int item) {
int low = 0;
int high = a.length - 1;
while (low <=  high) {

int mid = (low+high)/2;
if (a[mid] < item)

low = mid+1;
else if (item < a[mid])

high = mid - 1;
else return true;
}

return false;
} 

Linear Search vs. Binary Search
• Which one is better?

Linear Search is easier to 
program 
But Binary Search is 
faster… isn’t it?

• How do we measure to 
show that one is faster than 
the other

Experiment?
Proof?
But which inputs do we use?

• Simplifying assumption #1:
Use the size of the input 
rather than the input itself

For our sample search 
problem, the input size is 
n+1 where n is the array size

• Simplifying assumption #2:
Count the number of “basic 
steps” rather than 
computing exact times

One Basic Step = One Time Unit
• Basic step:

input or output of a scalar value
accessing the value of a scalar 
variable, array element, or field 
of an object
assignment to a variable, array 
element, or field of an object
a single arithmetic or logical 
operation
method invocation (not 
counting argument evaluation 
and execution of the method 
body)

• For a conditional, we count 
number of basic steps on the 
branch that is executed

• For a loop, we count number of 
basic steps in loop body times 
the number of iterations

• For a method, we count number 
of basic steps in method body 
(including steps needed to 
prepare stack-frame)
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Runtime vs. Number of Basic Steps
• But isn’t this cheating?

The runtime is not the same 
as the number of basic steps
Time per basic step varies 
depending on computer, on 
compiler, on details of 
code…

• Well… yes, it is cheating in 
a way

But the number of basic 
steps is proportional to the 
actual runtime

• Which is better?
n or n2 time?
100 n or n2 time?
10,000 n or n2 time?

• As n gets large, 
multiplicative constants 
become less important

• Simplifying assumption #3:
Multiplicative constants 
aren’t important

Using Big-O to Hide Constants
• Roughly, f(n) = O(g(n)) means 

that f(n) grows like g(n) or slower

Definition: O(g(n)) is a set;
f(n) is a member of this set if and 
only if there exist constants c and 
N such that
0 ≤ f(n) ≤ c g(n), for all n≥N

• We should write
f(n) ∈ O(g(n))

• But by convention, we write 
f(n) = O(g(n))

Claim: n2 + n = O(n2)

We know n ≤ n2 for n ≥1

So n2 + n ≤ 2 n2 for n ≥1

So by definition,
n2 + n = O(n2)

for c=2 and N=1

A Graphical View of Big-O Notation

• To prove that f(n) = O(g(n)):
Find an N and c such that 
0 ≤ f(n) ≤ c g(n), for all n≥N
We call the pair (c, N) a witness pair for proving that f(n) = O(g(n))

c g(n)

f(n)

N

Big-O Examples
Claim: 100 n + log n = O(n)

We know log n ≤ n for n ≥ 1

So 100 n + log n ≤ 101 n 
for n ≥ 1

So by definition,
100 n + log n = O(n)

for c=101 and N=1

Claim: logB n = O(log n)

Let k = log n

Then n = 2k and  (the 
subscripts are too messy; 
switch to board)

Question: Which grows 
faster: sqrt(n) or log n?

Simple Big-O Examples
• Let f(n) = 3n2 + 6n – 7

Claim f(n) = O(n2)
Claim f(n) = O(n3)
Claim f(n) = O(n4)
…

• g(n) = 4n log n + 34 n – 89
Claim g(n) = O(n log n)
Claim g(n) = O(n2)

• h(n) = 20 * 2n + 40
Claim h(n) = O(2n)

• a(n) = 34
Claim a(n) = O(1)

• Only the leading term (the 
term that grows most 
rapidly) matters

Problem-Size Examples
• Suppose we have a computing device that can 

execute 1000 operations per second; how large a 
problem can we solve?

211592n

1533910n3

1096144183n2

189724431n2

200,0004893140n log n
3,600,00060,0001000n

1 hour1 minute1 second
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Commonly Seen Time Bounds

too slowexponentialO(2n)
maybe OKcubicO(n3)

OKquadraticO(n2)
pretty goodO(n log n)

goodlinearO(n)
excellentlogarithmicO(log n)
excellentconstantO(1)

Related Notations

• Big-Omega

Definition: f(n) is a member of the 
set Ω(g(n)) if there exists 
constants c and N such that
0 ≤ c g(n) ≤ f(n), for all n≥N

• Big-Theta

Definition: f(n) is a member of the 
set Θ(g(n)) if
f(n) = O(g(n)) and f(n) = Ω(g(n))

Worst-Case/Expected-Case Bounds
• We can’t possibly 

determine time bounds for 
all possible inputs of size n

• Simplifying assumption #4:
Determine number of steps 
for either

worst-case or
expected-case

• Worst-case
Determine how much time 
is needed for the worst 
possible input of size n

• Expected-case
Determine how much time 
is needed on average for all 
inputs of size n

Our Simplifying Assumptions
1. Use the size of the input rather than the input itself

2. Count the number of “basic steps” rather than computing 
exact times

3. Multiplicative constants aren’t important 
(i.e., use big-O notation)

4. Determine number of steps for either
worst-case or
expected-case

Worst-Case Analysis of Searching
• Linear Search (check each 

element)
static boolean find (int[ ] a, int item) {

for (int i = 0; i < a.length; i++) {
if (a[i] == item) return true;
}

return false;
}

For Linear Search, worst-
case time is O(n)

For Binary Search, worst-
case time is O(log n)

• Binary Search

static boolean find (int[ ] a, int item) {
int low = 0;
int high = a.length - 1;
while (low <=  high) {

int mid = (low+high)/2;
if (a[mid] < item)

low = mid+1;
else if (item < a[mid])

high = mid - 1;
else return true;
}

return false;

} 

Analysis of Matrix Multiplication

Code for multiplying n-by-n  
matrices A and B:

for (i = 0; i<n; i++)
for (j = 0; j < n; j++)

for (k = 0; k < n; k++)
C[i][j] = C[i][j] + A[i][k] * B[k][j];

• By convention, matrix 
problems are measured in 
terms of n, the number of 
rows and columns

Note that the input size is 
really 2n2, not n
Worst-case time is O(n3)
Expected-case time is also 
O(n3)
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Remarks
• Once you get the hang of this, you can quickly zero 

in on what is relevant for determining asymptotic 
complexity

For example, you can usually ignore everything that is 
not in the innermost loop.  Why?

• Main difficulty:
Determining runtime for recursive programs

Summary
• Asymptotic complexity 

Used to measure of time (or space) required by an 
algorithm
Measure of the algorithm, not the problem

• Searching array 
Linear search: O(n) worst-case time
Binary search: O(log n) worst-case time

• Matrix operations:
Note: n = number-of-rows = number-of-columns
Matrix-vector product: O(n2) worst-case time
Matrix-matrix multiplication: O(n3) worst-case time

Why Bother with Runtime Analysis?
• Computers are so fast these 

days that we can do 
whatever we want using 
just simple algorithms and 
data structures, can’t we?

• Well…not really; data-
structure/algorithm 
improvements can be a 
very big win

• Scenario:
A runs in n2 msec
A’ runs in n2/10 msec
B runs in 10 n log n msec

• Problem of size n=103

A: 103 sec ≈ 17 minutes
A’: 102 sec ≈ 1.7 minutes
B: 102 sec ≈ 1.7 minutes

• Problem of size n=106

A: 109 sec ≈ 30 years
A’: 108 sec ≈ 3 years
B: 2 x 105 sec ≈ 2 days

1 day = 86,400 sec ≈ 105 sec
1,000 days ≈ 3 years

Algorithms for the Human Genome
• Human genome 

= 3.5 billion nucleotides 
~ 1 Gb

@ 1 base-pair instruction / 
µsec

• n2 ⇒ 388445 years
• n log n ⇒ 30.824 hours
• n ⇒ 1 hour

Limitations of Runtime Analysis
• Big-O can hide a large 

constant
Example: Selection
Example: small problems

• The specific problem you 
want to solve may not be 
the worst case

Example: Simplex method 
for linear programming

• Your program may not be 
run often enough to make 
analysis worthwhile

Example: 
one-shot vs. every day

• You may be analyzing and 
improving the wrong part 
of the program

Very common situation
Should use profiling tools


