
1

Comparisons and
the Comparable

Interface

Lecture 11
CS211 – Fall 2005

Comparison

• Something that we do a lot

• Can compare all kinds of data with respect to all
kinds of comparison relations

Identity
Equality
Order
Lots of others

Identity vs. Equality
• For primitive types (e.g., int, long, float, double, boolean)

== and != are equality tests

• For reference types (i.e., objects)
== and != are identity tests
In other words, they test if the references indicate the same address
in the Heap

• For equality of objects: use the equals() method
equals() is defined in class Object
Any class you create inherits equals from its parent class, but you
can override it (and probably want to)

Identity vs. Equality for Strings

• Quiz: What are the results of the following tests?
"hello".equals("hello")
"hello" == "hello"
"hello" == new String("hello")

true

true
false

Order
• For numeric primitives (e.g., int,

float, long, double)
Use <, >, <=, >=

• For reference types that
correspond to primitive types

As of Java 5.0, Java does
Autoboxing and Auto-
Unboxing of Primitive Types
This means, for example, that
an Integer is automatically
converted into an appropriate
int whenever necessary (and
vice versa)

• For all other reference types
<, >, <=, >= do not work

• Not clear you want them to
work: suppose we compare
People

Compare by name?
Compare by height?
weight?
Compare by SSN? CUID?

Java provides Comparable
interface

• Or can use a Comparator

Comparable Interface

• (Note: this is Java 1.4.2 – Java 5.0 has generics)
• x.compareTo(y) returns a negative, zero, or positive integer based on

whether x is less-than, equal-to, or greater-than y, respectively
• less-than, equal-to, and greater-than are defined for that class by the

implementation of compareTo

interface Comparable {
int compareTo(Object x);

}

2

Example
• To compare people by weight:

class Person implements Comparable {
private int weight;
...
public int compareTo(Object obj) {
return ((Person)obj).weight - weight;

}
public boolean equals(Object obj) {
return obj instanceof Person &&

((Person)obj).weight == weight;
}

}

Consistency
If a class has an equals method and also
implements Comparable, then it is advisable (but
not enforced) that

a.equals(b)

exactly when
a.compareTo(b) == 0

Odd behavior can result if this is violated

Generic Code
• The Comparable interface allows generic code for

sorting, searching, and other operations that only require
comparisons

• The sort methods do not need to know what they are sorting,
only how to compare elements

static void mergeSort(Comparable[] a) {...}
static void bubbleSort(Comparable[] a) {...}

Generic Code Example
• Finding the max element of an array

• What is the max element? Whatever compareTo
says it is!

//return max element of an array
static Comparable max(Comparable[] a) {
//throws ArrayIndexOutOfBoundsException
Comparable max = a[0];
for (Comparable x : a) {
if (x.compareTo(max) > 0) max = x;

}
return max;

}

Another Example
• Lexicographic comparison of Comparable arrays
• for int arrays, a < b lexicographically iff either:

a[i] == b[i] for i < j and a[j] < b[j]; or
a[i] == b[i] for all i < a.length, and b is longer

//compare two Comparable arrays lexicographically
static int arrayCompare(Comparable[] a, Comparable[] b) {
for (int i = 0; i < a.length && i < b.length; i++) {
int x = a[i].compareTo(b[i]);
if (x != 0) return x;

}
return b.length - a.length;

}

Comparable Interface Update
• Java 5.0 allows the use of “Generic Types”

Better name might be parameterized types
Here’s the Java 5.0 Comparable interface

Note that compareTo is only defined for arguments of
type T

• An attempt to use a different type is caught at compile time

interface Comparable<T> {
int compareTo(T x);

}

3

Example
• In the Java source code, class String looks sort of

(other interfaces are also implemented) like this:

• Code such as
“hello”.compareTo(new Integer(3))
generates a compile-time error

This implies that the runtime code can be more efficient

public final class String
implements Comparable<String>{

public int compareTo (String s) {...}
...}

Using Comparable for Sorting
• Sorting of an array is provided as part of the Java

Collections Framework

• This works for arrays of type comparableType[] (i.e., the
base type must implement the Comparable interface)

• (Class java.util.Arrays also contains sort methods for arrays
of type primType[] for each of the primitive types)

import java.util.Arrays;
...
String[] names;
...
Arrays.sort(names)

Unnatural Sorting
• The ordering given by

compareTo is considered to
be the natural ordering for
a class

• Sometimes you need to sort
based on a different
ordering

Example: we may normally
sort students by CUID, but
we might want to produce a
list alphabetized by name

• Can use a Comparator (a class
that implements the
Comparator interface)

Arrays.sort(students, comparator)

• String, for example, has a
predefined Comparator:

String.CASE_INSENSITIVE_ORDER

interface Comparator<T> {
int compare (T x, T y);

}

Efficient Programs
• Have been talking a lot about how to make writing

programs efficient
Interfaces, encapsulation, inheritance, type checking,
recursion vs. iteration, …

• Haven’t talked much about how to make the
programs themselves run efficiently

How long does it take program to run?
Is there an efficient data structure that should be used?
Is there a faster algorithm?

Linear Search
• Input:

Unsorted array A of Comparables
Value v of type Comparable

• Output:
True if v is in array A, false otherwise

• Algorithm: examine the elements of A in some order until
you either

Find v: return true, or
You have unsuccessfully examined all the elements of the array:
return false

7 4 6 19 3 7 8 10 32 54 67 98Linear search:

Code for Linear Search
// Linear search on possibly unsorted array
public static boolean linearSearch(Comparable[] a, Object v) {

for (int i = 0; i < a.length; i++)
if (a[i].compareTo(v) == 0) return true;

return false;
}

4

Binary Search
• Input:

Sorted array A[0..n-1] of Comparable
Value v of type Comparable

• Output:
True if v is in array A, false otherwise

• Algorithm: similar to looking up telephone directory
Let m be the middle element of the array
If (m == v) return true
If (m < v) search right half of array
If (m > v) search left half of array

-2 0 6 8 9 1113 22 34 45 56 78

1 2 3Search for 94

12
Search for 6

4

// Lo and hi are the two end points of interval of array
public static boolean binarySearch(Comparable[] a, int lo, int hi, Object v) {

int middle = (lo + hi)/2;
int c = A[middle].compareTo(v);

// Base cases
if (c == 0) return true;
// Check if array interval has only one element
if (lo == hi) return false;

// Array interval has more than one element, so continue searching
if (c > 0) return binarySearch(a, lo, middle -1, v); // Left half
else return binarySearch(a, middle+1, hi, v); // Right half

}

Invocation: assume array named data contains values

….. binarySearch(data, 0, data.length -1, v)…..

Comparing Algorithms
• If you run binary search and linear search on a

computer, you will find that binary search runs
much faster than linear search

• Stating this precisely can be quite subtle
• One approach: asymptotic complexity of programs

Big-O analysis

• Two steps:
Compute running time of program
Running time ⇒ asymptotic running time

Running Time of an Algorithm
• In general, running time of a program such as

linear search depends on many factors
Machine on which program is executed

• Laptop vs. supercomputer

Size of input (array A)
• Big array vs. small array

Values in array and value we search for
• v is first element examined in array vs. v is not in array

• To talk precisely about running times of programs,
we must specify all three factors above

Defining an Algorithm’s Running Time
1. Machine on which algorithm (i.e., program) is executed

Random-access Memory (RAM) model of computing
• Measure of running time: number of operations executed
Other models used in CS: Turing machine, Parallel RAM model,
…
Simplified RAM model for now:
• Each data comparison is one operation.
• All other operations are free.
• Evaluate searching/sorting algorithms by estimating number of

comparisons they execute
It can be shown that, for comparison-based searching and sorting
algorithms, the total number of operations executed on RAM model is
proportional to number of data comparisons executed

Defining Running Time (cont’d)
2. Dependence on size of input

Rather than compute a single number, we will
compute a function from problem size to number of
comparisons
• E.g., f(n) = 32n2 – 2n + 23 where n is problem size

Each program has its own measure of problem size
For searching/sorting, natural measure is size of array
on which you are searching/sorting

5

Defining Running Time (cont’d)
3. Dependence of running

time on input values
• Consider set In of all

possible inputs of size n
• Find number of

comparisons for each
possible input in this set

• Compute
Average: usually hard to
compute
Worst-case: easier to
compute

• We will use worst-case
complexity

([3,6], 2)

([3,6], 3)

([-4,5], -9)

…….

Possible inputs of size 2
for linear/binary search

7 4 6 19 3 7 8 10 32 54 67 98Linear search:

-2 0 6 8 9 1113 22 34 45 56 78

Binary search: sorted array of size n

Computing Running Times

Assume array is of size n.
Worst-case number of comparisons: v is not in array.
Number of comparisons = n.
Running time of linear search: TL(n) = n

Worst-case number of comparisons: v is not in array.

TB(n) = log2(n) + 1

