s4980
sosnm

i % :‘b | g CS2 11‘1““:6”82005
%ﬁ&ii -

Towe 31

List Overview

* Arrays
= Random access: :)

= Fixed size: cannot grow on demand after creation: : >((

« Characteristics of some applications:
= Do not need random access
= Require a data structure that can grow and shrink dynamically to
accommodate different amounts of data

Lists satisfy these requirements

 Let us study
= List creation
= Accessing elements in a list
= Inserting elements into a list
= Deleting elements from a list

List Operations

* ADT (Abstract Data Type): < List Operations:

= Specify public functionality = Create

= Hide implementation detail = Insert object
from users = Delete object

= Allows us to = Find object
improve/replace * Get Length, Full?, Empty?,
implementation Replace Object, ...

Forces us to think about
fundamental operations
Interface) separately from
the implementation

= Usually sequential access
(not random access)

List Data Structures

« Can use an array * Can use a sequence of
= Need to specify array size linked cells

= Inserts & Deletes require = We’ll focus on this kind of
moving elements implementation

= Must copy array (to a larger = We define a class ListCell
array) when it gets full from which we build lists

.
-

[24] 7[87]78] |

empty

Class ListCell
class ListCell { @

private Object datum;
private ListCell next; datum|Object:
public LlstCeII(ObJecto ListCell n){ next| ListCell
datum =
next = n; getDatum
getNext|
public Object getDatum() {//sometimes called car
return datum; setDatum|
setNext

public ListCell getNext() {//sometimes called cdr, tail, rest
return next;

}
public void setDatum(Object o) {//sometimes called rplaca
datum = o;

By convention,

public void setNext(ListCell I) {//sometimes called rplacd we will not show
next =1; the instance methods
} when drawing cells.

}

Building a List

I [ListCen]

ListCell 1 = new ListCell(new Integer(24), null); —

To keep things simple, we will not show Integer objects
explicitly in our pictures, but only show the value contained =
in them.

Integer t = new Integer(24); plListCell] ——
Integer s = new Integer(-7);
Integer e = new Integer(87);

One way:

ListCell p = new ListCell(t, new ListCell(s, new ListCell(e,null)));

Building a List (cont’d)

Another way:

Integer t = new Integer(24);
Integer s = new Integer(-7);
Integer e = new Integer(87);

ListCell p = new ListCell(e,null); p|Li I
p = new ListCell(s,p);

p = new ListCell(t,p);

Note: assignment of form p = new ListCell(s,p); does not
create a circular list.

Accessing List Elements

« Lists are sequential- p |ListCs I:
access data structures.
= to access the contents
of cell n in sequence,
you must access
cells 0..n-1
* Accessing data in first =
cell: p.getDatum() + Writing to fields
* Accessing data in in cells can be done the Heap
second cell: same way
p-getNext().getDatum() = p.setDatum(new Integer(53));//update
+ Accessing next field in data field of first cell
second cell: = p.getNext().setDatum(new
p.getNext().getNext() Integer(53))://update field of second cell
= p.getNext().setNext(null);//chop off third

cell

Access Example: Linear Search

IIscan list looking for object o and return true if found
public static boolean search(Object x, ListCell I) {
for (ListCell current = I; current != null; current = current.getNext())
if (current.getDatum().equals(x)) return true;
return false;

ListCell p = new ListCell(“hello”, new ListCell(“dolly”, new ListCell(“polly”, null)));
search(“dolly”, p); //returns true

search(“molly”, p); //returns false

search(“dolly”, null); //returns false

//Here is another version. Why does this work? Draw stack picture to understand.
public static boolean search(Object x, ListCell I) {
for (; I = null; | =l.getNext())
if (l.getDatum().equals(x)) return true;
return false;

Recursion on Lists

Recursion can be done on lists

= Similar to recursion on integers

Almost always
= Base case: empty list

= Recursive case: Assume you can solve problem on (smaller) list
obtained by eliminating first cell...

Many list problems can be solved very simply by using
this idea.

= Some problems though are easier to solve iteratively.

Recursion Example: Linear Search

* Base case: empty list
return false
* Recursive case: non-empty list
if data in first cell equals object o, return true
else return result of doing linear search on rest of list

public static boolean recursiveSearch(Object x, ListCell 1) {
if (1==null) return false;
else return l.getDatum().equals(x) || recursiveSearch(x, l.getNext());

1
§

Execution of Recursive Program

public static boolean recursiveSearch (Object x, ListCell 1) {
if (I==null) return false;

else return l.getDatum().equals(x) || recursiveSearch(x, l.getNext());

}

X
|
rv|_false
X
|
v

false

false

J_x 2_x

false

Iteration 1s Sometimes Better

 Given a list, create a new list with elements in reverse order
from input list.
//intuition: think of reversing a pile of coins
public static ListCell reverse (ListCell 1) {
ListCell rev =null ;
for (;1!=null; 1 = L.getNext())
rev = new ListCell(l.getDatum(), rev);
return rev;
}
* It is not obvious how to write this simply in a recursive
divide-and-conquer style.

List with Header

+ Some authors prefer to have a List class that is distinct from ListCell
class.

« List object is like a head element that always exists even if list itself is

empty.
class List {
protected ListCell head;
public List (ListCell 1) { head(_J

head =1;

}
public ListCell getHead()

Variations of List with Header

* Header can also
keep other info

= Reference to last
cell of list

Number of
elements in list

Search/insertion/
deletion as
instance
methods

Heap

Special Cases to Worry About

* Empty list
= add
= find
= delete?(!)
» Front of list
= insert
* End of list
= find
= delete
» Lists with just one element

Tree Overview

 Tree: recursive data

structure (similar to list) (5 (5
= Each cell may have two or 0 9 0 9
more successors (children)
= Each cell has at most one a G e a 9

predecessor (parent)

« Distinguished cell called General tree Binary tree
root has no parent

= All cells are reachable from

root e
* Binary tree: tree in which @ ,@
each cell can have at most @
two children
D 6 4

Not a tree List-like tree

Tree Terminology

* M is the root of this tree

* G is the root of the left subtree of
M

« B,H,J,N, and S are leaves

e Nis the left child of P; S is the right
child

« Pisthe parent of N

* M and G are ancestors of D

¢ P, N, and S are descendents of W

* Node J is at depth 2 (i.e., depth =
length of path from root)

* Node W is at height 2 (i.e., height =
length of longest path from leaf)

* A collection of several trees is
calleda ??

Class for Binary Tree Cells

class TreeCell {
private Object datum;
private TreeCell left;
private TreeCell right;

public TreeCell (Object x) {
datum = x;

}

public TreeCell (Object x, TreeCell |, TreeCell r) {
datum = x;
left=1;
right=r;

}

methods called getDatum, setDatum,

getLeft, setLeft, getRight, setRight

with obvious code

Class for General Trees

class GTreeCell { o @

private Object datum;
private GTreeCell left;

private GTreeCell sibling; o e 9

....appropriate getter and setter
methods ﬂ @ @ @

} General tree

Parent node points directly only
to its leftmost child

Leftmost child has pointer to
next sibling which points to next
sibling, etc.

@® @O

Tree represented using GTreeCell

Applications of Trees

» Most languages (natural and computer) have a recursive,
hierarchical structure

* This structure is implicit in ordinary textual representation

* Recursive structure can be made explicit by representing
sentences in the language as trees: Abstract Syntax Trees
(ASTs)

» ASTs are easier to optimize, generate code from, etc. than
textual representation

« Converting textual representations to AST: job of parser!

Example
* Expression grammar:
E — integer Text Tree representation
E— (E+E)
-34

« In textual representation

= Parentheses show
hierarchical structure

* In tree representation
= Hierarchy is explicit in the
structure of the tree.

((2+3) +(5+7)) /G)

Recursion on trees

* Recursive methods can be written to operate on
trees in the obvious way

* In most problems
= Base case: empty tree
+ Sometimes base case is leaf node
= Recursive case: solve problem on left and right sub-

trees then put solutions together to compute solution for
full tree

Example: Delete from a List

* Delete first occurrence of object x from list 1
= Recursive delete
= [terative delete

* Intuitive idea of recursive code
= Iflist 1 is empty, return null
= If first element of | is x, return rest of list |
= Otherwise, return list consisting of
 First element of 1, and
« List that results from deleting x from rest of list |

Recursive Code for Delete

public static ListCell deleteRecursive (Object x, ListCell 1) {

//'If list is empty, nothing to do
if (I == null) return null;
/I Otherwise check first element of list
else if (l.getDatum().equals(x))

return l.getNext();
/I Otherwise delete x from rest of list and update next field of |
else {l.setNext(deleteRecursive(x, l.getNext()));

return |;

}

Iterative delete

* Two steps: head: ListCell;
= Locate cell that is the

predecessor of cell to be deleted p List[7]

<«—current
« Keep two cursors, scout and
current, that traverse the list in
lock step scout
+ Scout is always one cell ahead <«—current

of current

Current starts at head of list
<«— scout

Stop when scout finds cell
containing x, or falls off end of
list
= If scout finds cell, update next
field of current cell to next field =
of scout cell to splice out object
x from list
delete 36 from list

Iterative Code for Delete

public void delete (Object x) {
/I Empty list?
if (head == null) return;
/I Is first element equal to x; if so splice first cell out
if (head.getDatum().equals(x)) {
head = head.getNext();
return;

/I Walk down list; at end of loop, scout will point to first cell containing x, if any
ListCell current = head;
ListCell scout = head.getNext();
while ((scout != null) && ! scout.getDatum().equals(x)) {
current = scout;
scout = scout.getNext();

if (scout != null) // Found occurrence of x
current.setNext(scout.getNext()); / Splice out cell containing o

Doubly-Linked Lists

* In some applications, it is convenient to have a
ListCell that has references to both its predecessor and
its successor in the list.

class DLLCell {
private Object datum;
private DLLCell next;
private DLLCell previous;

Doubly-Linked vs. Singly-Linked

« [t is often easier to work with doubly-linked lists
than with (singly-linked) lists
= For example, reversing a DLL can be done simply by
swapping the previous and next fields of each cell

* Trade-off: DLLs require more heap space than
singly-linked lists

Fancy Lists

e 2-D lists:
= References to cells left, right, up, down
e 3-Dlists, ...
* Rings, pipes, torus lists
Lists of lists (nested lists)
= ((This is a sentence.)
(This is a sentence, t00.)
(This is another sentence.)

)

List Summary

« Lists are sequences of « Recursion makes perfect
ListCell elements sense on lists. Usually
= Recursive data structure = Base case: empty list
= Grow and shrink on demand = Recursive case: non-empty
= Not random-access but list
sequential access data « Subspecies of lists
structures = List with header
* List operations = Doubly-linked lists

= Create a list

= Access a list and update data

= Change structure of list by
inserting/deleting cells

 Cursors

Tree Summary

* A tree is a recursive data structure built from TreeCell
elements
= Special case: binary tree
* Binary tree cells have both a left and a right “successor”
= Called children rather than successors
= Similarly, parent rather than predecessor
= Generalization of parent and child to ancestors and descendants

* Trees are useful for exposing the recursive structure of
natural language programs and computer programs

LISP

* List languages first developed for Al
* LISP: List Processing Language
= Developed in 50-60’s by John McCarthy, et al.
* Lists and list processing are a fundamental part of LISP
language
= Lists are primitive data type
= Functions operate directly on lists
= Program itself expressed as list of lists
* “car”: contents address register (getDatum())
* “cdr”: contents decrement register (getNext())
* “caddr” = (car (cdr (cdr list))) = object in 3rd element

