
1

Lists & Trees

Lecture 8
CS211 – Fall 2005

List Overview
• Arrays

Random access: :)
Fixed size: cannot grow on demand after creation: : >((

• Characteristics of some applications:
Do not need random access
Require a data structure that can grow and shrink dynamically to
accommodate different amounts of data

Lists satisfy these requirements

• Let us study
List creation
Accessing elements in a list
Inserting elements into a list
Deleting elements from a list

List Operations
• ADT (Abstract Data Type):

Specify public functionality
Hide implementation detail
from users
Allows us to
improve/replace
implementation
Forces us to think about
fundamental operations
Interface) separately from
the implementation

• List Operations:
Create
Insert object
Delete object
Find object
Get Length, Full?, Empty?,
Replace Object, …
Usually sequential access
(not random access)

List Data Structures
• Can use an array

Need to specify array size
Inserts & Deletes require
moving elements
Must copy array (to a larger
array) when it gets full

• Can use a sequence of
linked cells

We’ll focus on this kind of
implementation
We define a class ListCell
from which we build lists

24 -7 87 78

empty

24

-7

87

78

•

Class ListCell
class ListCell {

private Object datum;
private ListCell next;

public ListCell(Object o, ListCell n){
datum = o;
next = n;

}
public Object getDatum() {//sometimes called car

return datum;
}
public ListCell getNext() {//sometimes called cdr, tail, rest

return next;
}
public void setDatum(Object o) {//sometimes called rplaca

datum = o;
}
public void setNext(ListCell l) {//sometimes called rplacd

next = l;
}

}

datum Object:

next ListCell:

getDatum

getNext

setDatum

setNext

By convention,
we will not show
the instance methods
when drawing cells.

ListCell Building a List

ListCell l = new ListCell(new Integer(24), null);
24

24

-7

87

Integer t = new Integer(24);
Integer s = new Integer(-7);
Integer e = new Integer(87);

ListCell p = new ListCell(t, new ListCell(s, new ListCell(e,null)));

One way:

p ListCell:

l ListCell:

Heap

To keep things simple, we will not show Integer objects
explicitly in our pictures, but only show the value contained
in them.

2

Building a List (cont’d)

24

-7

87

Integer t = new Integer(24);
Integer s = new Integer(-7);
Integer e = new Integer(87);

ListCell p = new ListCell(e,null);
p = new ListCell(s,p);
p = new ListCell(t,p);

p ListCell:

HeapAnother way:

Note: assignment of form p = new ListCell(s,p); does not
create a circular list.

Accessing List Elements
• Lists are sequential-

access data structures.
to access the contents
of cell n in sequence,
you must access
cells 0..n-1

• Accessing data in first
cell: p.getDatum()

• Accessing data in
second cell:
p.getNext().getDatum()

• Accessing next field in
second cell:
p.getNext().getNext()

• Writing to fields
in cells can be done the
same way

p.setDatum(new Integer(53));//update
data field of first cell
p.getNext().setDatum(new
Integer(53));//update field of second cell
p.getNext().setNext(null);//chop off third
cell

24

-7

87

p ListCell:

Heap

Access Example: Linear Search
//scan list looking for object o and return true if found
public static boolean search(Object x, ListCell l) {

for (ListCell current = l; current != null; current = current.getNext())
if (current.getDatum().equals(x)) return true;

return false;
}

…..
ListCell p = new ListCell(“hello”, new ListCell(“dolly”, new ListCell(“polly”, null)));
search(“dolly”, p); //returns true
search(“molly”, p); //returns false
search(“dolly”, null); //returns false

….
//Here is another version. Why does this work? Draw stack picture to understand.
public static boolean search(Object x, ListCell l) {

for (; l != null; l =l.getNext())
if (l.getDatum().equals(x)) return true;

return false;
}

Recursion on Lists
• Recursion can be done on lists

Similar to recursion on integers

• Almost always
Base case: empty list
Recursive case: Assume you can solve problem on (smaller) list
obtained by eliminating first cell…

• Many list problems can be solved very simply by using
this idea.

Some problems though are easier to solve iteratively.

Recursion Example: Linear Search
• Base case: empty list

return false

• Recursive case: non-empty list
if data in first cell equals object o, return true
else return result of doing linear search on rest of list

public static boolean recursiveSearch(Object x, ListCell l) {
if (l == null) return false;
else return l.getDatum().equals(x) || recursiveSearch(x, l.getNext());

}

Execution of Recursive Program
public static boolean recursiveSearch (Object x, ListCell l) {

if (l == null) return false;
else return l.getDatum().equals(x) || recursiveSearch(x, l.getNext());

}

24

-7

87

Heaprv
l

x
rv

l
x

rv
l

x

rv
l

x 36

false

false

false

false

3

Iteration is Sometimes Better
• Given a list, create a new list with elements in reverse order

from input list.
//intuition: think of reversing a pile of coins
public static ListCell reverse (ListCell l) {

ListCell rev = null ;
for (; l != null; l = l.getNext())

rev = new ListCell(l.getDatum(), rev);
return rev;

}

• It is not obvious how to write this simply in a recursive
divide-and-conquer style.

List with Header
• Some authors prefer to have a List class that is distinct from ListCell

class.
• List object is like a head element that always exists even if list itself is

empty.
class List {

protected ListCell head;
public List (ListCell l) {

head = l;
}
public ListCell getHead()
………..

public void setHead(ListCell l)
………..

}

24

-7

87

Heap

head
List

Variations of List with Header

• Header can also
keep other info

Reference to last
cell of list
Number of
elements in list
Search/insertion/
deletion as
instance
methods
…..

24

-7

87

Heap

head
List

List

head
tail

head
List

tail
size 3

Special Cases to Worry About
• Empty list

add
find
delete?(!)

• Front of list
insert

• End of list
find
delete

• Lists with just one element

Tree Overview
• Tree: recursive data

structure (similar to list)
Each cell may have two or
more successors (children)
Each cell has at most one
predecessor (parent)

• Distinguished cell called
root has no parent

All cells are reachable from
root

• Binary tree: tree in which
each cell can have at most
two children

5

4

7 8 9

2

5

4

7 8

2

5

4

7 8

5

6

8

General tree Binary tree

Not a tree List-like tree

Tree Terminology
• M is the root of this tree
• G is the root of the left subtree of

M
• B, H, J, N, and S are leaves
• N is the left child of P; S is the right

child
• P is the parent of N
• M and G are ancestors of D
• P, N, and S are descendents of W
• Node J is at depth 2 (i.e., depth =

length of path from root)
• Node W is at height 2 (i.e., height =

length of longest path from leaf)
• A collection of several trees is

called a ??

M

G W

PJD

NHB S

4

Class for Binary Tree Cells

class TreeCell {
private Object datum;
private TreeCell left;
private TreeCell right;

public TreeCell (Object x) {
datum = x;
}
public TreeCell (Object x, TreeCell l, TreeCell r) {

datum = x;
left = l;
right = r;

}
methods called getDatum, setDatum,
getLeft, setLeft, getRight, setRight
with obvious code

}

Class for General Trees
class GTreeCell{

private Object datum;
private GTreeCell left;
private GTreeCell sibling;
….appropriate getter and setter
methods

}

• Parent node points directly only
to its leftmost child

• Leftmost child has pointer to
next sibling which points to next
sibling, etc.

5

4

7 8 9

2

7 8 3 1

5

4

7 8 9

2

7 8 3 1

General tree

Tree represented using GTreeCell

Applications of Trees
• Most languages (natural and computer) have a recursive,

hierarchical structure
• This structure is implicit in ordinary textual representation
• Recursive structure can be made explicit by representing

sentences in the language as trees: Abstract Syntax Trees
(ASTs)

• ASTs are easier to optimize, generate code from, etc. than
textual representation

• Converting textual representations to AST: job of parser!

Example
• Expression grammar:

E → integer
E → (E + E)

• In textual representation
Parentheses show
hierarchical structure

• In tree representation
Hierarchy is explicit in the
structure of the tree.

-34 -34

(2 + 3) +

2 3

((2+3) + (5+7))

+

2 3 5 7

+

+

Text Tree representation

Recursion on trees
• Recursive methods can be written to operate on

trees in the obvious way
• In most problems

Base case: empty tree
• Sometimes base case is leaf node

Recursive case: solve problem on left and right sub-
trees then put solutions together to compute solution for
full tree

Example: Delete from a List
• Delete first occurrence of object x from list l

Recursive delete
Iterative delete

• Intuitive idea of recursive code
If list l is empty, return null
If first element of l is x, return rest of list l
Otherwise, return list consisting of

• First element of l, and
• List that results from deleting x from rest of list l

5

Recursive Code for Delete

public static ListCell deleteRecursive (Object x, ListCell l) {
// If list is empty, nothing to do
if (l == null) return null;
// Otherwise check first element of list
else if (l.getDatum().equals(x))

return l.getNext();
// Otherwise delete x from rest of list and update next field of l
else {l.setNext(deleteRecursive(x, l.getNext()));

return l;
}

}
}

Iterative delete
• Two steps:

Locate cell that is the
predecessor of cell to be deleted

• Keep two cursors, scout and
current, that traverse the list in
lock step

• Scout is always one cell ahead
of current

• Current starts at head of list
• Stop when scout finds cell

containing x, or falls off end of
list

If scout finds cell, update next
field of current cell to next field
of scout cell to splice out object
x from list

-7

24

87

p List:

36

current

scout
current

scout

delete 36 from list

:head: ListCell:

Iterative Code for Delete
public void delete (Object x) {

// Empty list?
if (head == null) return;
// Is first element equal to x; if so splice first cell out
if (head.getDatum().equals(x)) {

head = head.getNext();
return;
}

// Walk down list; at end of loop, scout will point to first cell containing x, if any
ListCell current = head;
ListCell scout = head.getNext();
while ((scout != null) && ! scout.getDatum().equals(x)) {

current = scout;
scout = scout.getNext();

}
if (scout != null) // Found occurrence of x

current.setNext(scout.getNext()); // Splice out cell containing o
}

Doubly-Linked Lists
• In some applications, it is convenient to have a

ListCell that has references to both its predecessor and
its successor in the list.

6 45 8 -9

next

previous

class DLLCell {
private Object datum;
private DLLCell next;
private DLLCell previous;
…..

}

Doubly-Linked vs. Singly-Linked

• It is often easier to work with doubly-linked lists
than with (singly-linked) lists

For example, reversing a DLL can be done simply by
swapping the previous and next fields of each cell

• Trade-off: DLLs require more heap space than
singly-linked lists

Fancy Lists
• 2-D lists:

References to cells left, right, up, down
• 3-D lists, …
• Rings, pipes, torus lists
• Lists of lists (nested lists)

((This is a sentence.)
(This is a sentence, too.)
(This is another sentence.)
…)

6

List Summary
• Lists are sequences of

ListCell elements
Recursive data structure
Grow and shrink on demand
Not random-access but
sequential access data
structures

• List operations
Create a list
Access a list and update data
Change structure of list by
inserting/deleting cells

• Cursors

• Recursion makes perfect
sense on lists. Usually

Base case: empty list
Recursive case: non-empty
list

• Subspecies of lists
List with header
Doubly-linked lists

Tree Summary
• A tree is a recursive data structure built from TreeCell

elements
Special case: binary tree

• Binary tree cells have both a left and a right “successor”
Called children rather than successors
Similarly, parent rather than predecessor
Generalization of parent and child to ancestors and descendants

• Trees are useful for exposing the recursive structure of
natural language programs and computer programs

LISP
• List languages first developed for AI
• LISP: List Processing Language

Developed in 50-60’s by John McCarthy, et al.

• Lists and list processing are a fundamental part of LISP
language

Lists are primitive data type
Functions operate directly on lists
Program itself expressed as list of lists

• “car”: contents address register (getDatum())
• “cdr”: contents decrement register (getNext())
• “caddr” = (car (cdr (cdr list))) = object in 3rd element

