Object-Oriented Programming
CS211

Announcements

* A2 due Wed night
» A3 posted soon after
* Prelim 1 conflicts:
— We will post announcements on what to do

Object-Oriented Programming
(OOP)

What do we mean by object-oriented ?
— Class is blueprint; specification

— Object is specific instance

— Object has state and behavior

Problem solving...the gist:

— Nouns become constants, enums, local
variables, instance/class variables, objects

— Verbs become operators or methods

OOQOP for Design

* Implementation

— heap allocation of objects
* Allocate memory with new

— references to objects
* new Thing () returns address of object

* Why use it?
— modularity
— code reuse
— type safety
— ease of design




Some Context

Programming “in the large”
— big applications require many programmers
General approach
— break problem into smaller subproblems
— assign responsibility for each subproblem to somebody
— keep the interfaces small!
Each subproblem must have a specification
— Functionality: What services must code provide?
— Interface: What input conditions does the code expect? What
output conditions does it guarantee?
Job of the programmer: provide an implementation
(code) that meets the specification

The Message

» Separate the specification from the
implementation

— called data abstraction in the literature
— more modular, easier to maintain

— implementation is hidden from the client, can be
changed without changing the interface

— the client’s code does not break

» Object-oriented languages

— encourage data abstraction
— more modular code

* See Puzzle example...

The 8-Puzzle

(specification)
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Program Organization

e class Puzzle

—an implementation of the game, written by you
— functionality: NBE

e init — put puzzle in the initial state : Z -
=move —move atile N, S, E, or W to get a new state

= tile — report which tile is in a given position

e class TestPuzzle

— a client class, written by someone else
— will communicate with Puzzle (your code) to
play the game




Implementation

» Two subtasks
— How do we represent a state (puzzle configuration)?
— Given the representation, how do we implement
init, move, and tile?
» Suppose no objects
— What kinds of data to represent puzzle?
— See posted examples
— We'll focus on integer for now

Representation of State: integer
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* Model puzzle state as an integer:

—Value is between 123456789 and 987654321
— 9 represents the empty square

» To convert integer s into a grid representation:

—Remainder when s is divided by 10: tile in bottom right position
+ Java expression: s$10

— Quotient after dividing by 10 gives encoding of remaining tiles
« Java expression: s/10

— Repeat remainder/quotient operations to extract remaining tiles

» This encoding may seem strange, but it arises many places in CS

— Storing multidimensional arrays in memory

Implementing Operations

= init: putinto initial configuration
s = 123456879;
e tile: what tile is in position (row,col) ?

return s/ ((int)Math.pow (10, 8-
(3*row+col)) ) %10;

= move: see examples

A Key Question

* Where do we keep the state?

1. method parameter/local variable
— client keeps track of it
— passed to Puzzle methods on each call
— allocated on stack

2.class variable of Puzzle class
—client does not see it
— allocated in static area

» These implementation choices affect the

interface of the Puzz1le class




Interface L(ocal)

@ — @

(2) state out

» State is implemented as local variable in class
TestPuzzle
— passed to/returned from methods in Puzzle class

* Interface of Puzzle class:

//return encoding of initial state

int init();

//return number of tile at grid (r,c)

int tile(int s, int r, int c);

//move to a new state, return new encoding
int move (int s, char d);

Implementation using L

public class TestPuzzle { public class Puzzle {
public static void main(String[] args) { public static int init() {
int state = Puzzle.init(); return 123456879;
display (state) ; }
state = Puzzle.move (state, 'N');
public static int tile(int s, int r, int ¢) {
) return s/ ((int)Math.pow(10,8-(3*r+c)))$10;
}
public static void display(int s) {
for (int r = 0; r < 3; r++) {
for (int ¢ = 0; c < 3; c+4)
System.out.print (Puzzle.tile(s,r,c) }
+ "N }

public static int move(int s, char d) {

System.out.println();
}

) Implementation
}

Client

Critique of Interface L

No data abstraction!

—Puzzle class implementer chose to
implement puzzle state as an int

— This representation is exposed in the
interface, so the client code is aware of it

— Client’'s code may depend on this encoding

—If Puzzle class implementer decides to

change the implementatation (say, to
represent state as a 1ong), client code breaks
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Interface S(tatic)

Static area

Puzzle.state

>

« State is implemented as class variable in class Puzzle
— state does not have to be passed back and forth
— representation is hidden from client

 Interface of Puzzle class:

void init(); //initialize the state
int tile(int r, int c¢); //return tile in position (r,c)
void move (char d); //move in direction d
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Implementation using S

public class TestPuzzle {

public static void main(String[] args) {
Puzzle.init();
display() ;
Puzzle.move('N’') ;

}

public static void display() {
for (int r = 0;r < 3; r++) {
for (int ¢ = 0; c < 3; cHf)
System.out.print (Puzzle.tile(r,c)
)
System.out.println();
}
}
)

public class Puzzle {
private static int state;

public static void init {
state = 123456879;
}

public static int tile(int r, int c)

return state/((int)Math.pow(10,8-(3*r+c)))%10;

}
public static void move(char d) {

}

Critique of Interface S

« Data abstraction: yes!

—Puzzle class implementer chose to
implement state as int

— State representation is not visible outside of
Puzzle class

—If Puzzle class implementer decides to
change implementation of state to 1ong,
client code does not have to change

17 . .
« Problem: only one client and one puzzle af
A Sneaky Solution Sneaky Implementation of S
Static area public class TestPuzzle {
Puzzlel.state public static void main(String[] args) { || Public class Puzzlel {
Puzzlel.init(); private static int state;
Puzzle2.state displayl()
> Puzzlel.move ('N'); public static void init {
. state = 123456879;
: .
Puzzle2.init();
display2() ;
Puzzle2.move ('N'); }
@ y public class Puzzle2 {
private static int state;
public static void displayl() {
public static void init {
} state = 123456879;
* Make copies of Puzzle class and rename ' !
them Tublu: static void display2() { )
« If client wants n puzzles, make n copies :
19 2




Critique

Data abstraction: yes

Crgation on demand: yes, but at cost of duplication of
code

Must know number of instances at compile time
Naming issues
How to improve all of this?
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The Case for Objects

Copying and renaming gives us

— a unique name for each instance of the puzzle

— a separate variable to store the state of each instance
— allows multiple simultaneous instances of the puzzle
But all the instances have identical values!

Can we design language mechanisms to
support the creation of separate instances?
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Solution: Ask Gutenberg!

Algorithm for making a copy of a book in the middle ages:
— Hire a monk
— Give monk paper and quill
— Ask monk to copy text of book
Algorithm for making n copies of a book
— Hire a monk
— Give monk lots of paper and quills
— Ask monk to copy text of book n times
Modern algorithm (Gutenberg, Strasbourg ca.1450 AD):
— First make a template using movable type
— Stamp out as many copies of book as needed
Copying class code is like medieval approach to copying books!
How do we exploit Gutenberg’s insight in our context?
— What is the template for puzzles?
— How do we stamp out new puzzle instances from the template?

— How do we name different puzzle instances? 2

Gutenberg Bible

— The Huntington Collection 24
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Object-Oriented Languages

The class definition is the template

Instances of the class are called objects

Objects are stamped out (created) in an area of memory
called the heap

instance variables: when different instances are stamped
out, they will each have their own copies of all instance
variables (e.g. state)

instance methods: code is shared among all instances of
the same class, but references to instance variables in
the code access those belonging to the correct object!
constructor: a special method associated with a class
invoked to create new instances of that class

Heap Allocation

public class Puzzle {
private int state;

public void init() {
state = 123456879;
}

public int tile(int r, int ¢) {

return state/((int)Math.pow (10,8-(3*r+c)))$10;

}
public void move(char d) {

}

 Heap shows two instances of class Puzzle
« Class name is used as type of object
« Each object has its own instance variables

Program a

rea

tile tile
move ! move
Heap

« Instance variables are declared private, so not accessible to client
« Compiled instance methods are stored in Program area

25 « All objects of type Puzz1le share code for instance methods as shown 26
Nall“ng Instances Program area
public class TestPuzzle {
. Referenge: a_vanable_that is a name for objects of some class public static void main(String[] args) { ‘imt ______ Tile  move ‘
—contains either a pointer to some object or null
. R Puzzle puzzlel = new Puzzle();
< Reference type is class name: Puzzle puzzle? = new Puzzle () ;
Puzzle pl; //declare a reference variable puzzlel.init();
. . . . display (puzzlel) ;
« Creation of an object using a constructor and assignment to a puzzles.init () ;
reference: display (puzzle2) ; ctate [ine: state( int:
pl = new Puzzle(); //create a new object, call it pl init it init
Puzzle p2 = new Puzzle(); //can do both at once ! tni tile
« Invoking instance method public static void display (Puzzle p) m:V: move )
pl.init(); }
« Implementation: }
—examine object pointed to by p1 Heap
—look inside object for starting address of method named init puzzle2 |Puzzle:
—invoke that method puzzlet PU.ZZIQ'
args | String][l
< Ll Stack frame for main 28

value




Method Invocation

» References can be passed as parameters
— formal parameter becomes name for object in callee
— callee can manipulate object using that name
— on method return, caller sees any changes made to

object by callee

* Example: display method
— no need to have different code for each puzzle

instance
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public class TestPuzzle {

public static void main(String[] args) {

Puzzle puzzlel = new Puzzle();
Puzzle puzzle2 = new Puzzle();

puzzlel.init();

Program area

Heap

display (puzzlel) ;
puzzle2.init() ;
display (puzzle2) ;

}
public static void display(Puzzle p) {

for (int r = 0;r < 3; r++) {
for (int c = 0; c < 3; c++)

System.out.print (p.tile(r,c) + " ");
System.out.println(" ");
}
}

o

}

Stack frame for display
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puzzle2 |Puzzle:

puzzle1 |Puzzle:

args | String][]

Stack frame for main 30

+ Q: How does tile method know which

Accessing Instance Variables

Program area
...pl.tile(2,3)...
...p2.tile(0,1)...

Heap

object to manipulate?

+ A:Low-level code for tile takes an extra

parameter: reference to object (this):
pl.tile(x,y) becomes
pl.tile(pl,x,y)

c |int:
r|int:
this|Puzzle:

Stack frame for invocation of tile

‘init“mmtilemmmovemm

state
init
tile

move

iﬂ

state
init
tile

move

i:

Keyword this

* In instance method, this is a reference to
object in which the method exists

public class TestPuzzle {

public static void main(String[] args) {
Puzzle puzzlel = new Puzzle();
puzzlel.init();

}
}

public static void display(Puzzle p) {
for (int r = 0; r < 3; r++) {

}
}

public class Puzzle {

public void move (char d) {

TestPuzzle.display (this) ;
}

}
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Critique

» Data abstraction: yes

» Creation on demand: yes
» Duplicate class code: no
* Duplicate client code: no
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Garbage Collection

Intuitively, an object is live at time t if that object is still in
use and can be accessed by the program after time t
Formally (recursive definition), an object O is live if:

— The runtime stack contains a reference to O

— There is a live object O' that contains a reference to O
Everything else is garbage

— Periodically, system detects garbage and reclaims it

— Start with the stack, trace all references, mark all objects seen —
anything not marked is garbage

C, C++:
— Pointer arithmetic makes it hard to determine what is a reference

— Storage reclamation must be done explicitly by programmer
(malloc, mfree)

— Highly error-prone
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Conclusion

Object-oriented languages support data
abstraction and code reuse

Objects (instances of a class) can be created on
demand by client without breaking abstraction

Client can hold a reference to an object, but
implementation is hidden from it

User-defined types: class names are used as
types of objects and references
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