Object-Oriented Programming
CS211

Announcements

* A2 due Wed night
» A3 posted soon after
* Prelim 1 conflicts:
— We will post announcements on what to do

Object-Oriented Programming
(OOP)

What do we mean by object-oriented ?
— Class is blueprint; specification

— Object is specific instance

— Object has state and behavior

Problem solving...the gist:

— Nouns become constants, enums, local
variables, instance/class variables, objects

— Verbs become operators or methods

OOQOP for Design

* Implementation

— heap allocation of objects
* Allocate memory with new

— references to objects
* new Thing () returns address of object

* Why use it?
— modularity
— code reuse
— type safety
— ease of design

Some Context

Programming “in the large”
— big applications require many programmers
General approach
— break problem into smaller subproblems
— assign responsibility for each subproblem to somebody
— keep the interfaces small!
Each subproblem must have a specification
— Functionality: What services must code provide?
— Interface: What input conditions does the code expect? What
output conditions does it guarantee?
Job of the programmer: provide an implementation
(code) that meets the specification

The Message

» Separate the specification from the
implementation

— called data abstraction in the literature
— more modular, easier to maintain

— implementation is hidden from the client, can be
changed without changing the interface

— the client’s code does not break

» Object-oriented languages

— encourage data abstraction
— more modular code

* See Puzzle example...

The 8-Puzzle

(specification)

1123 1123
4|56 4| e
7] Ts 7|58
EE 113
11213 426 E . l4]2]6
4 6 7158 w 71518
758 11213 113
46 4|26
7|58 7158
1123
4|6
7|58

Program Organization

e class Puzzle

—an implementation of the game, written by you
— functionality: NBE

e init — put puzzle in the initial state : Z -
=move —move atile N, S, E, or W to get a new state

= tile — report which tile is in a given position

e class TestPuzzle

— a client class, written by someone else
— will communicate with Puzzle (your code) to
play the game

Implementation

» Two subtasks
— How do we represent a state (puzzle configuration)?
— Given the representation, how do we implement
init, move, and tile?
» Suppose no objects
— What kinds of data to represent puzzle?
— See posted examples
— We'll focus on integer for now

Representation of State: integer

1123

4196 —+ 123496758
7/5|8

* Model puzzle state as an integer:

—Value is between 123456789 and 987654321
— 9 represents the empty square

» To convert integer s into a grid representation:

—Remainder when s is divided by 10: tile in bottom right position
+ Java expression: s$10

— Quotient after dividing by 10 gives encoding of remaining tiles
« Java expression: s/10

— Repeat remainder/quotient operations to extract remaining tiles

» This encoding may seem strange, but it arises many places in CS

— Storing multidimensional arrays in memory

Implementing Operations

= init: putinto initial configuration
s = 123456879;
e tile: what tile is in position (row,col) ?

return s/ ((int)Math.pow (10, 8-
(3*row+col))) %10;

= move: see examples

A Key Question

* Where do we keep the state?

1. method parameter/local variable
— client keeps track of it
— passed to Puzzle methods on each call
— allocated on stack

2.class variable of Puzzle class
—client does not see it
— allocated in static area

» These implementation choices affect the

interface of the Puzz1le class

Interface L(ocal)

@ — @

(2) state out

» State is implemented as local variable in class
TestPuzzle
— passed to/returned from methods in Puzzle class

* Interface of Puzzle class:

//return encoding of initial state

int init();

//return number of tile at grid (r,c)

int tile(int s, int r, int c);

//move to a new state, return new encoding
int move (int s, char d);

Implementation using L

public class TestPuzzle { public class Puzzle {
public static void main(String[] args) { public static int init() {
int state = Puzzle.init(); return 123456879;
display (state) ; }
state = Puzzle.move (state, 'N');
public static int tile(int s, int r, int ¢) {
) return s/ ((int)Math.pow(10,8-(3*r+c)))$10;
}
public static void display(int s) {
for (int r = 0; r < 3; r++) {
for (int ¢ = 0; c < 3; c+4)
System.out.print (Puzzle.tile(s,r,c) }
+ "N }

public static int move(int s, char d) {

System.out.println();
}

) Implementation
}

Client

Critique of Interface L

No data abstraction!

—Puzzle class implementer chose to
implement puzzle state as an int

— This representation is exposed in the
interface, so the client code is aware of it

— Client’'s code may depend on this encoding

—If Puzzle class implementer decides to

change the implementatation (say, to
represent state as a 1ong), client code breaks

15

Interface S(tatic)

Static area

Puzzle.state

>

« State is implemented as class variable in class Puzzle
— state does not have to be passed back and forth
— representation is hidden from client

 Interface of Puzzle class:

void init(); //initialize the state
int tile(int r, int c¢); //return tile in position (r,c)
void move (char d); //move in direction d

16

Implementation using S

public class TestPuzzle {

public static void main(String[] args) {
Puzzle.init();
display() ;
Puzzle.move('N’') ;

}

public static void display() {
for (int r = 0;r < 3; r++) {
for (int ¢ = 0; c < 3; cHf)
System.out.print (Puzzle.tile(r,c)
)
System.out.println();
}
}
)

public class Puzzle {
private static int state;

public static void init {
state = 123456879;
}

public static int tile(int r, int c)

return state/((int)Math.pow(10,8-(3*r+c)))%10;

}
public static void move(char d) {

}

Critique of Interface S

« Data abstraction: yes!

—Puzzle class implementer chose to
implement state as int

— State representation is not visible outside of
Puzzle class

—If Puzzle class implementer decides to
change implementation of state to 1ong,
client code does not have to change

17 . .
« Problem: only one client and one puzzle af
A Sneaky Solution Sneaky Implementation of S
Static area public class TestPuzzle {
Puzzlel.state public static void main(String[] args) { || Public class Puzzlel {
Puzzlel.init(); private static int state;
Puzzle2.state displayl()
> Puzzlel.move ('N'); public static void init {
. state = 123456879;
: .
Puzzle2.init();
display2() ;
Puzzle2.move ('N'); }
@ y public class Puzzle2 {
private static int state;
public static void displayl() {
public static void init {
} state = 123456879;
* Make copies of Puzzle class and rename ' !
them Tublu: static void display2() {)
« If client wants n puzzles, make n copies :
19 2

Critique

Data abstraction: yes

Crgation on demand: yes, but at cost of duplication of
code

Must know number of instances at compile time
Naming issues
How to improve all of this?

21

The Case for Objects

Copying and renaming gives us

— a unique name for each instance of the puzzle

— a separate variable to store the state of each instance
— allows multiple simultaneous instances of the puzzle
But all the instances have identical values!

Can we design language mechanisms to
support the creation of separate instances?

22

Solution: Ask Gutenberg!

Algorithm for making a copy of a book in the middle ages:
— Hire a monk
— Give monk paper and quill
— Ask monk to copy text of book
Algorithm for making n copies of a book
— Hire a monk
— Give monk lots of paper and quills
— Ask monk to copy text of book n times
Modern algorithm (Gutenberg, Strasbourg ca.1450 AD):
— First make a template using movable type
— Stamp out as many copies of book as needed
Copying class code is like medieval approach to copying books!
How do we exploit Gutenberg’s insight in our context?
— What is the template for puzzles?
— How do we stamp out new puzzle instances from the template?

— How do we name different puzzle instances? 2

Gutenberg Bible

— The Huntington Collection 24

.

Object-Oriented Languages

The class definition is the template

Instances of the class are called objects

Objects are stamped out (created) in an area of memory
called the heap

instance variables: when different instances are stamped
out, they will each have their own copies of all instance
variables (e.g. state)

instance methods: code is shared among all instances of
the same class, but references to instance variables in
the code access those belonging to the correct object!
constructor: a special method associated with a class
invoked to create new instances of that class

Heap Allocation

public class Puzzle {
private int state;

public void init() {
state = 123456879;
}

public int tile(int r, int ¢) {

return state/((int)Math.pow (10,8-(3*r+c)))$10;

}
public void move(char d) {

}

 Heap shows two instances of class Puzzle
« Class name is used as type of object
« Each object has its own instance variables

Program a

rea

tile tile
move ! move
Heap

« Instance variables are declared private, so not accessible to client
« Compiled instance methods are stored in Program area

25 « All objects of type Puzz1le share code for instance methods as shown 26
Nall“ng Instances Program area
public class TestPuzzle {
. Referenge: a_vanable_that is a name for objects of some class public static void main(String[] args) { ‘imt ______ Tile move ‘
—contains either a pointer to some object or null
. R Puzzle puzzlel = new Puzzle();
< Reference type is class name: Puzzle puzzle? = new Puzzle () ;
Puzzle pl; //declare a reference variable puzzlel.init();
. . . . display (puzzlel) ;
« Creation of an object using a constructor and assignment to a puzzles.init () ;
reference: display (puzzle2) ; ctate [ine: state(int:
pl = new Puzzle(); //create a new object, call it pl init it init
Puzzle p2 = new Puzzle(); //can do both at once ! tni tile
« Invoking instance method public static void display (Puzzle p) m:V: move)
pl.init(); }
« Implementation: }
—examine object pointed to by p1 Heap
—look inside object for starting address of method named init puzzle2 |Puzzle:
—invoke that method puzzlet PU.ZZIQ'
args | String][l
< Ll Stack frame for main 28

value

Method Invocation

» References can be passed as parameters
— formal parameter becomes name for object in callee
— callee can manipulate object using that name
— on method return, caller sees any changes made to

object by callee

* Example: display method
— no need to have different code for each puzzle

instance

29

public class TestPuzzle {

public static void main(String[] args) {

Puzzle puzzlel = new Puzzle();
Puzzle puzzle2 = new Puzzle();

puzzlel.init();

Program area

Heap

display (puzzlel) ;
puzzle2.init() ;
display (puzzle2) ;

}
public static void display(Puzzle p) {

for (int r = 0;r < 3; r++) {
for (int c = 0; c < 3; c++)

System.out.print (p.tile(r,c) + " ");
System.out.println(" ");
}
}

o

}

Stack frame for display

o°
| =
c
N
N
@

puzzle2 |Puzzle:

puzzle1 |Puzzle:

args | String][]

Stack frame for main 30

+ Q: How does tile method know which

Accessing Instance Variables

Program area
...pl.tile(2,3)...
...p2.tile(0,1)...

Heap

object to manipulate?

+ A:Low-level code for tile takes an extra

parameter: reference to object (this):
pl.tile(x,y) becomes
pl.tile(pl,x,y)

c |int:
r|int:
this|Puzzle:

Stack frame for invocation of tile

‘init“mmtilemmmovemm

state
init
tile

move

iﬂ

state
init
tile

move

i:

Keyword this

* In instance method, this is a reference to
object in which the method exists

public class TestPuzzle {

public static void main(String[] args) {
Puzzle puzzlel = new Puzzle();
puzzlel.init();

}
}

public static void display(Puzzle p) {
for (int r = 0; r < 3; r++) {

}
}

public class Puzzle {

public void move (char d) {

TestPuzzle.display (this) ;
}

}

32

Critique

» Data abstraction: yes

» Creation on demand: yes
» Duplicate class code: no
* Duplicate client code: no

33

Garbage Collection

Intuitively, an object is live at time t if that object is still in
use and can be accessed by the program after time t
Formally (recursive definition), an object O is live if:

— The runtime stack contains a reference to O

— There is a live object O' that contains a reference to O
Everything else is garbage

— Periodically, system detects garbage and reclaims it

— Start with the stack, trace all references, mark all objects seen —
anything not marked is garbage

C, C++:
— Pointer arithmetic makes it hard to determine what is a reference

— Storage reclamation must be done explicitly by programmer
(malloc, mfree)

— Highly error-prone

34

Conclusion

Object-oriented languages support data
abstraction and code reuse

Objects (instances of a class) can be created on
demand by client without breaking abstraction

Client can hold a reference to an object, but
implementation is hidden from it

User-defined types: class names are used as
types of objects and references

35

