
1

1

Object-Oriented Programming
CS211

2

Announcements

• A2 due Wed night
• A3 posted soon after
• Prelim 1 conflicts:

– We will post announcements on what to do

3

Object-Oriented Programming
(OOP)

• What do we mean by object-oriented?
– Class is blueprint; specification
– Object is specific instance
– Object has state and behavior

• Problem solving…the gist:
– Nouns become constants, enums, local

variables, instance/class variables, objects
– Verbs become operators or methods

4

OOP for Design

• Implementation
– heap allocation of objects

• Allocate memory with new

– references to objects
• new Thing() returns address of object

• Why use it?
– modularity
– code reuse
– type safety
– ease of design

2

5

Some Context

• Programming “in the large”
– big applications require many programmers

• General approach
– break problem into smaller subproblems
– assign responsibility for each subproblem to somebody
– keep the interfaces small!

• Each subproblem must have a specification
– Functionality: What services must code provide?
– Interface: What input conditions does the code expect? What

output conditions does it guarantee?
• Job of the programmer: provide an implementation

(code) that meets the specification

6

The Message

• Separate the specification from the
implementation
– called data abstraction in the literature
– more modular, easier to maintain
– implementation is hidden from the client, can be

changed without changing the interface
– the client’s code does not break

• Object-oriented languages
– encourage data abstraction
– more modular code

• See Puzzle example…

7

The 8-Puzzle
(specification)

N

S

E

W

87
654
321

857
64
321

857
624
31

857
64
321

857
64

321

857
64
321

857
624
31

857
624

31

N

E

W

8

Program Organization
• class Puzzle

– an implementation of the game, written by you
– functionality:

•init ─ put puzzle in the initial state
•move ─ move a tile N, S, E, or W to get a new state
•tile ─ report which tile is in a given position

• class TestPuzzle
– a client class, written by someone else
– will communicate with Puzzle (your code) to

play the game

87

654

321

3

9

Implementation

• Two subtasks
– How do we represent a state (puzzle configuration)?
– Given the representation, how do we implement
init, move, and tile?

• Suppose no objects
– What kinds of data to represent puzzle?
– See posted examples
– We’ll focus on integer for now

10

Representation of State: integer

• Model puzzle state as an integer:
– Value is between 123456789 and 987654321
–9 represents the empty square

• To convert integer s into a grid representation:
– Remainder when s is divided by 10: tile in bottom right position

• Java expression: s%10
– Quotient after dividing by 10 gives encoding of remaining tiles

• Java expression: s/10
– Repeat remainder/quotient operations to extract remaining tiles

• This encoding may seem strange, but it arises many places in CS
– Storing multidimensional arrays in memory

123496758
857
694
321

11

Implementing Operations

• init: put into initial configuration
s = 123456879;

• tile: what tile is in position (row,col)?
return s/((int)Math.pow(10,8-
(3*row+col)))%10;

• move: see examples

12

A Key Question

• Where do we keep the state?
1.method parameter/local variable

─ client keeps track of it
─ passed to Puzzle methods on each call
─ allocated on stack

2. class variable of Puzzle class
─ client does not see it
─ allocated in static area

• These implementation choices affect the
interface of the Puzzle class

4

13

Interface L(ocal)

• State is implemented as local variable in class
TestPuzzle
– passed to/returned from methods in Puzzle class

• Interface of Puzzle class:

//return encoding of initial state
int init();
//return number of tile at grid (r,c)
int tile(int s, int r, int c);
//move to a new state, return new encoding
int move(int s, char d);

TestPuzzle Puzzle
(1) state in

(2) state out

14

public class TestPuzzle {

public static void main(String[] args) {
int state = Puzzle.init();
display(state);
state = Puzzle.move(state,′N′);
...

}

public static void display(int s) {
for (int r = 0; r < 3; r++) {
for (int c = 0; c < 3; c++)
System.out.print(Puzzle.tile(s,r,c)

+ ″ ″);
System.out.println();

}
}

}

public class Puzzle {

public static int init() {
return 123456879;

}

public static int tile(int s, int r, int c) {
return s/((int)Math.pow(10,8-(3*r+c)))%10;

}

public static int move(int s, char d) {
...

}
}

Implementation using L

Client

Implementation

15

Critique of Interface L

• No data abstraction!
– Puzzle class implementer chose to

implement puzzle state as an int
– This representation is exposed in the

interface, so the client code is aware of it
– Client’s code may depend on this encoding
– If Puzzle class implementer decides to

change the implementatation (say, to
represent state as a long), client code breaks

16

Interface S(tatic)

• State is implemented as class variable in class Puzzle
– state does not have to be passed back and forth
– representation is hidden from client

• Interface of Puzzle class:

void init(); //initialize the state
int tile(int r, int c); //return tile in position (r,c)
void move(char d); //move in direction d

TestPuzzle Puzzle

Puzzle.state int:

Static area

5

17

public class TestPuzzle {

public static void main(String[] args) {
Puzzle.init();
display();
Puzzle.move(′N′);
...

}

public static void display() {
for (int r = 0;r < 3; r++) {
for (int c = 0; c < 3; c++)
System.out.print(Puzzle.tile(r,c)

+ " ");
System.out.println();

}
}

}

public class Puzzle {
private static int state;

public static void init {
state = 123456879;

}

public static int tile(int r, int c) {
return state/((int)Math.pow(10,8-(3*r+c)))%10;

}

public static void move(char d) {
...

}
}

Implementation using S

18

Critique of Interface S

• Data abstraction: yes!
– Puzzle class implementer chose to

implement state as int
– State representation is not visible outside of
Puzzle class

– If Puzzle class implementer decides to
change implementation of state to long,
client code does not have to change

• Problem: only one client and one puzzle at

19

A Sneaky Solution

• Make copies of Puzzle class and rename
them

• If client wants n puzzles, make n copies

TestPuzzle
Puzzle1

Puzzle1.state int:

Static area

Puzzle2.state int:

Puzzle2

20

Sneaky Implementation of S

public class TestPuzzle {

public static void main(String[] args) {
Puzzle1.init();
display1();
Puzzle1.move(′N′);
...

Puzzle2.init();
display2();
Puzzle2.move(′N′);
...

}

public static void display1() {
...
}

}

public static void display2() {
...

}
}

public class Puzzle1 {
private static int state;

public static void init {
state = 123456879;

}

...
}

public class Puzzle2 {
private static int state;

public static void init {
state = 123456879;

}

...
}

6

21

Critique
• Data abstraction: yes
• Creation on demand: yes, but at cost of duplication of

code
• Must know number of instances at compile time
• Naming issues
• How to improve all of this?

22

The Case for Objects

• Copying and renaming gives us
– a unique name for each instance of the puzzle
– a separate variable to store the state of each instance
– allows multiple simultaneous instances of the puzzle

• But all the instances have identical values!
• Can we design language mechanisms to

support the creation of separate instances?

23

Solution: Ask Gutenberg!
• Algorithm for making a copy of a book in the middle ages:

– Hire a monk
– Give monk paper and quill
– Ask monk to copy text of book

• Algorithm for making n copies of a book
– Hire a monk
– Give monk lots of paper and quills
– Ask monk to copy text of book n times

• Modern algorithm (Gutenberg, Strasbourg ca.1450 AD):
– First make a template using movable type
– Stamp out as many copies of book as needed

• Copying class code is like medieval approach to copying books!
• How do we exploit Gutenberg’s insight in our context?

– What is the template for puzzles?
– How do we stamp out new puzzle instances from the template?
– How do we name different puzzle instances?

24

Gutenberg Bible
– The Huntington Collection

7

25

Object-Oriented Languages
• The class definition is the template
• Instances of the class are called objects
• Objects are stamped out (created) in an area of memory

called the heap
• instance variables: when different instances are stamped

out, they will each have their own copies of all instance
variables (e.g. state)

• instance methods: code is shared among all instances of
the same class, but references to instance variables in
the code access those belonging to the correct object!

• constructor: a special method associated with a class
invoked to create new instances of that class

26

• Heap shows two instances of class Puzzle
• Class name is used as type of object
• Each object has its own instance variables
• Instance variables are declared private, so not accessible to client
• Compiled instance methods are stored in Program area
• All objects of type Puzzle share code for instance methods as shown

Heap Allocation

public class Puzzle {
private int state;

public void init() {
state = 123456879;

}

public int tile(int r, int c) {
return state/((int)Math.pow(10,8-(3*r+c)))%10;

}

public void move(char d) {
...

}
}

init……tile……move……

int:state
init
tile
move

int:

Heap

Program area

PuzzlePuzzle

state
init
tile
move

27

Naming Instances
• Reference: a variable that is a name for objects of some class

– contains either a pointer to some object or null
• Reference type is class name:

Puzzle p1; //declare a reference variable

• Creation of an object using a constructor and assignment to a
reference:

p1 = new Puzzle(); //create a new object, call it p1
Puzzle p2 = new Puzzle(); //can do both at once

• Invoking instance method
p1.init();

• Implementation:
– examine object pointed to by p1
– look inside object for starting address of method named init
– invoke that method

28

public class TestPuzzle {

public static void main(String[] args) {

Puzzle puzzle1 = new Puzzle();
Puzzle puzzle2 = new Puzzle();
puzzle1.init();
display(puzzle1);
puzzle2.init();
display(puzzle2);
...

}

public static void display(Puzzle p) {
...

}
}

Client Code

args
puzzle1
puzzle2

String[]:
Puzzle:
Puzzle:

…….

init……tile…...move……

Heap

Program area

int:state
init
tile
move

Puzzle
int:state

init
tile
move

Puzzle

Stack frame for main
type value

8

29

Method Invocation
• References can be passed as parameters

– formal parameter becomes name for object in callee
– callee can manipulate object using that name
– on method return, caller sees any changes made to

object by callee
• Example: display method

– no need to have different code for each puzzle
instance

30

public class TestPuzzle {

public static void main(String[] args) {

Puzzle puzzle1 = new Puzzle();
Puzzle puzzle2 = new Puzzle();
puzzle1.init();
display(puzzle1);
puzzle2.init();
display(puzzle2);
...

}

public static void display(Puzzle p) {
for (int r = 0;r < 3; r++) {
for (int c = 0; c < 3; c++)
System.out.print(p.tile(r,c) + " ");

System.out.println(" ");
}

}
}

args
puzzle1
puzzle2

String[]:
Puzzle:
Puzzle:

…….

init……tile……move……

Heap

Program area

i:state
init
tile
move

Puzzle

i:state
init
tile
move

Puzzle

Stack frame for main

p
r
c

Puzzle:
i:
i:

……

Stack frame for display

31

Accessing Instance Variables

Puzzle:
…….

init………tile……move……

Heap

Program area

i:state
init
tile
move

Puzzle

i:state
init
tile
move

Puzzle

Stack frame for invocation of tile

...p1.tile(2,3)...

...p2.tile(0,1)...

• Q: How does tile method know which
object to manipulate?

• A: Low-level code for tile takes an extra
parameter: reference to object (this):

p1.tile(x,y) becomes
p1.tile(p1,x,y)

r int:
c int:

this

32

Keyword this

• In instance method, this is a reference to
object in which the method exists

public class Puzzle {

...
public void move(char d) {
...
TestPuzzle.display(this);

}
...

}

public class TestPuzzle {

public static void main(String[] args) {
Puzzle puzzle1 = new Puzzle();
puzzle1.init();
...

}
}

public static void display(Puzzle p) {
for (int r = 0; r < 3; r++) {
...
}

}

9

33

Critique

• Data abstraction: yes
• Creation on demand: yes
• Duplicate class code: no
• Duplicate client code: no

34

Garbage Collection
• Intuitively, an object is live at time t if that object is still in

use and can be accessed by the program after time t
• Formally (recursive definition), an object O is live if:

– The runtime stack contains a reference to O
– There is a live object O' that contains a reference to O

• Everything else is garbage
– Periodically, system detects garbage and reclaims it
– Start with the stack, trace all references, mark all objects seen –

anything not marked is garbage
• C, C++:

– Pointer arithmetic makes it hard to determine what is a reference
– Storage reclamation must be done explicitly by programmer

(malloc, mfree)
– Highly error-prone

35

Conclusion

• Object-oriented languages support data
abstraction and code reuse

• Objects (instances of a class) can be created on
demand by client without breaking abstraction

• Client can hold a reference to an object, but
implementation is hidden from it

• User-defined types: class names are used as
types of objects and references

