
1

Grammars and
Parsing

Lecture 5
CS211 – Fall 2005

Announcements
• CMS is being “cleaned”

If you did not turn in A1 and
haven’t already contacted
David Schwartz, you need
to contact him now

• Java Reminder
Any “significant” class
should be declared public
and should appear in a file
whose name matches the
class name

• Academic Integrity
There were some AI
violations on Assignment 1
We treat such violations
seriously and have begun
the hearing process

We test all pairs of
submitted programming
assignments for similarity

• Similarities are caught
even if variables are
renamed

Application of Recursion

• So far, we have discussed recursion on integers
Factorial, fibonacci, combinations, an

• Let us now consider a new application that shows
off the full power of recursion: Grammars and
Parsing

• Parsing has numerous applications: compilers, data
retrieval, data mining,….

Motivation
The cat ate the rat.
The cat ate the rat slowly.
The small cat ate the big rat slowly.
The small cat ate the big rat on the

mat slowly.
The small cat that sat in the hat ate

the big rat on the mat slowly.
The small cat that sat in the hat ate

the big rat on the mat slowly,
then got sick.

…

• Not all sequences of words are
legal sentences

The ate cat rat the
• How many legal sentences are

there?

• How many legal programs are
there?

• Are all Java programs that
compile legal programs?

• How do we know what programs
are legal?

http://java.sun.com/docs/books/jls
/third_edition/html/syntax.html

A Grammar
Sentence → Noun Verb Noun
Noun → boys
Noun → girls
Noun → dogs
Verb → like
Verb → see

• Our sample grammar has these
rules:

A Sentence can be a Noun
followed by a Verb followed by
a Noun
A Noun can be ‘boys’ or ‘girls’
or ‘dogs’
A Verb can be ‘like’ or ‘see’

• Grammar: set of rules for
generating sentences in a
language

• Examples of Sentence:
boys see dogs
dogs like girls
…..

• Note: white space between
words does not matter

The tokens here are words
This grammar has 5 tokens

• This is a very boring grammar
because the set of Sentences is
finite (exactly 18 sentences).

A Recursive Grammar
Sentence → Sentence and Sentence
Sentence → Sentence or Sentence
Sentence → Noun Verb Noun
Noun → boys
Noun → girls
Noun → dogs
Verb → like
Verb → see

• This grammar is more interesting
than the one in the last slide
because the set of Sentences is
infinite

• Examples of Sentences in this
language:

boys like girls
boys like girls and girls like
dogs
boys like girls and girls like
dogs and girls like dogs
boys like girls and girls like
dogs and girls like dogs and
girls like dogs
………

• What makes this set infinite?
Answer: recursive definition of
Sentence

2

Detour
• What if we want to add a period

at the end of every sentence?
Sentence → Sentence and Sentence .
Sentence → Sentence or Sentence .
Sentence → Noun Verb Noun .

Noun → ……..

• Does this work?
• No! This produces sentences like:

girls like boys . and boys like dogs . .

Sentences with Periods

TopLevelSentence → Sentence .
Sentence → Sentence and Sentence
Sentence → Sentence or Sentence
Sentence → Noun Verb Noun
Noun → boys
Noun → girls
Noun → dogs
Verb → like
Verb → see

• Add a new rule that adds a
period only at the end of the
sentence.

• Thought exercise: How does this
work?

• The tokens here are the 5 words
plus the period (.)

Grammar for Simple Expressions
E → integer
E → (E + E)

• This is a grammar for simple
expressions:

An E can be an integer.
An E can be ‘(‘ followed by an
E followed by ‘+’ followed by
an E followed by ‘)’

• Set of expressions defined by
this grammar is a recursively-
defined set

Is language finite or infinite?
Do recursive grammars always
yield infinite languages?

• Here are some legal expressions:
2
(3 + 34)
((4+23) + 89)
((89 + 23) + (23 + (34+12)))

• Here are some illegal
expressions:

(3
3 + 4

• The tokens in this grammar are
(, +,), and any integer

Parsing
• Grammars can be used in two

ways
A grammar defines a language
(i.e., the set of properly
structured sentences)
A grammar can be used to
parse a sentence (thus,
checking if the sentence is in
the language)

• One way to parse a sentence is to
build a parse tree

This is much like diagramming
a sentence

• Example: Show that
((4+23) + 89)
is a valid expression (E) by
building a parse tree

E

(E)E+

89
(E)E+

4 23

Recursive Descent Parsing
• Idea: Use the grammar to design

a recursive program to check if a
sentence is in the language

• To parse an expression (E), for
instance

We look for each terminal (i.e.,
each token)
Each nonterminal (e.g., E) can
handle itself by using a
recursive call

• The grammar tells how to write
the program

Pseudo Code:

public boolean parseE () {
if (first token is an integer) return true;
if (first token is “(”) {

parseE();
Make sure there is a “+” token;
parseE();
Make sure there is a “)” token;
return true;
}

return false;

Java Code for Parsing E
public static boolean parseE (Scanner scanner) {

if (scanner.hasNextInt()) {
scanner.nextInt();
return true;

}
return check(scanner, "(") &&

parseE(scanner) &&
check(scanner, "+") &&
parseE(scanner) &&
check(scanner, ")");

}

3

A Note on Boolean Operators
• Java supports two kinds of Boolean operators:

E1 & E2:
• Evaluate both E1 and E2 and compute their conjunction

(i.e.,“and”)

E1 && E2:
• Evaluate E1. If E1 is false, E2 is not evaluated, and value of

expression is false. If E1 is true, E2 is evaluated, and value of
expression is the conjunction of the values of E1 and E2.

• In our parser code, we use &&
If check(scanner, “)”) returns false, we simply return
false without trying to read anything more from input

• This gives a graceful way to handle errors

Helper Method
public static boolean check (Scanner scanner, String string) {

if (!scanner.hasNext()) {
System.err.println("Missing token: " + string);
return false;

}
String token = scanner.next();
if (!token.equals(string)) {

System.err.println("Expected " + string + ", but found " + token);
return false;

}
return true;

}

Main Program
public static void main (String[] args) {

Scanner sc = new Scanner(System.in);
String line = sc.nextLine();
while (line.length() != 0) {

System.out.println(line);
Scanner scanner = new Scanner(line);
boolean valid = parseE(scanner);
if (valid && scanner.hasNext()) {

valid = false;
System.err.println("Extra token: " + scanner.next());

}
System.out.println(valid? "Valid" : "Invalid");
line = sc.nextLine();

}
System.out.println("Exiting");

}

(3 + (34 + 23))

parseE()

(3 + (34 + 23))

parseE()

(3 + (34 + 23))

parseE()

(3 + (34 + 23))

parseE()

(3 + (34 + 23))

parseE()

Trace of Recursive Calls to parseE

Using a Parser to Generate Code

• We can modify the parser so that it generates stack code to
evaluate arithmetic expressions:

2 : PUSH 2
STOP

(2 + 3) : PUSH 2
PUSH 3
ADD
STOP

Idea
• Recursive method parseE should return a string containing

stack code for expression it has parsed

• Top-level method should tack on a STOP command after
code received from parseE

• Method parseE generates code in a recursive way:
For integer i, it returns string “PUSH ” + i + “\n”
For (E1 + E2),

• Recursive calls return code for E1 and E2
Say these are strings c1 and c2

• Method returns c1 + c2 + “ADD\n”

4

Main Program
public static void main (String[] args) {

String code = null;
Scanner sc = new Scanner(System.in);
String line = sc.nextLine();
while (line.length() != 0) {

System.out.println(line);
Scanner scanner = new Scanner(line);
try {

code = parseE(scanner) + “STOP\n”;
if (scanner.hasNext()) error("Extra token: " + scanner.next());

} catch (RuntimeException e) {
code = “ERROR\n";

}
System.out.println(code);
line = sc.nextLine();

}
System.out.println("Exiting");

}

Rest of Code Gen Program
public static void error (String message) {

System.err.println(message);
throw new RuntimeException();

}
public static void check (Scanner scanner, String string) {

if (!scanner.hasNext()) error("Missing token: " + string);
String token = scanner.next();
if (!token.equals(string)) error("Expected " + string + ", but found " + token);

}
public static String parseE (Scanner scanner) {

if (scanner.hasNextInt()) return "PUSH " + scanner.nextInt() + "\n";
check(scanner, "(");
String c1 = parseE(scanner);
check(scanner, "+");
String c2 = parseE(scanner);
check(scanner, ")");
return c1 + c2 + "ADD\n";

}

Does Recursive Descent Always Work?
• There are some grammars

that cannot be used as the
basis for recursive descent

A trivial example (causes
infinite recursion):

• S -> b
• S -> Sa

• Can rewrite grammar
• S -> b
• S -> bA
• A -> aA

• For some constructs,
Recursive Descent is hard
to use

Can use a more powerful
parsing technique (there are
several, but not in this
course)

Syntactic Ambiguity
• Sometimes a sentence has

more than one parse tree
S → A | aaB
A → ε | aAb
B → ε | aB | bB

The string aabb can be parsed in
two ways

• This kind of ambiguity
sometimes shows up in
programming languages

if E1 then if E2 then S1 else S2

• This ambiguity actually
affects the program’s
meaning

• How do we resolve this?
Provide an extra non-grammar
rule (e.g., the else goes with
the closest if)
Modify the grammar (e.g., an
if-statement must end with a
‘fi’)
Other methods (e.g., Python
uses amount of indentation)

Exercises
• Think about recursive calls made to parse and generate code

for simple expressions
• 2
• (2 + 3)
• ((2 + 45) + (34 + -9))

• Can you derive an expression for the total number of calls
made to parseE for parsing an expression?

Hint: think inductively

• Can you derive an expression for the maximum number of
recursive calls that are active at any time during the parsing
of an expression?

Exercises
• Write a grammar and recursive program for palindromes?

mom
dad
i prefer pi
race car
red rum sir is murder
murder for a jar of red rum
sex at noon taxes

• Write a grammar and recursive program for strings AN BN

AB
AABB
AAAAAAABBBBBBB

• Write a grammar and recursive program for Java identifiers
<letter> [<letter> or <digit>]0…N

j27, but not 2j7

5

Number of Recursive Calls
• Claim:

of calls to parseE for expression E =
of integers in E + # of addition symbols in E.

• Example: ((2 + 3) + 5)
of calls to getExp = 3 + 2 = 5

Inductive Proof
• Order expressions by their length (# of tokens)
• E1 < E2 if length(E1) < length(E2).

0 1 2 3 54

1
-27

(2 + 3)

(1 + 0)

Proof of # of recursive calls
• Base case: (length = 1)

Expression must be an integer
parseE will be called exactly once as predicted by formula

• Inductive case: Assume formula is true for all expressions
with n or fewer tokens.

If there are no expressions with n+1 tokens, result is trivially true
for n+1
Otherwise, consider expression E of length n+1. E cannot be an
integer; therefore it must be of the form (E1 + E2) where E1 and E2
have n or fewer tokens. By inductive assumption, result is true for
E1 and E2.

#-of-calls-for-E = 1 + #-of-calls-for-E1 + #-of-calls-for-E2
= 1 + #-of-integers-in-E1 + #-of-'+'-in-E1 +

#-of-integers-in-E2 + #-of-'+'-in-E2
= #-of-integers-in-E + #-of-'+'-in-E

as required

Conclusion
• Recursion is a very powerful technique for writing compact

programs that do complex things.
• Common mistakes:

Incorrect or missing base cases
Sub-problems must be simpler than top-level problem

• Try to write description of recursive algorithm and reason
about base cases etc. before writing code.

Why?
• Syntactic junk such as type declarations… can create mental fog that

obscures the underlying recursive algorithm.
Try to separate logic of program from coding details.

