
1

1

CS/ENGRD 211
Fall 2005

Lecture 1: Overview
http://www.cs.cornell.edu/courses/cs211/2005fa

2

Course Staff

• Instructors:
– Professor Paul Chew
– Professor David Schwartz
– Lead lectures and coordinate course

• Administrative Assistant:
– Kelly Patwell
– General administration

• Locations, office hours, contact info?
– See Staff on website

3

Student Course Staff

• Teaching Assistants:
– TAs lead recitation sections
– TAs are your main contact point

• Consultants:
– In Upson 360, hours TBA online
– “Front line” for answering questions

• More info?
– See Staff on website

4

Lectures

• TR 10:10-11am, Olin 155
• Attendance is mandatory
• Lecture notes will be online—print them

before class and bring them to class
• We will occasionally make small last

minute changes to the notes, so don’t print
them too far in advance

• Readings will be posted online together
with lecture notes

5

Sections

• Attendance is mandatory
• Usually review, help on homework
• Sometimes new material 6

CS212

• CS 212: Java Practicum
• 1 credit project course
• Substantial project
• 1 lecture per week
• Required for CS majors; recommended for

others
• Take 211 and 212 in same semester?

2

7

Obtain Java

• We do not require an IDE
• We generally use Dr Java
• We do require Java 5
• See Help & Software under Java

Resources on website

8

Java Help
• CS 211 assumes basic Java knowledge:

– control structures
– arrays, strings
– classes (fields, methods, constructors)

• Need review?
– Tutorials, links on website (Help & Software)
– Java Bootcamp:

• self-guided tutorial—material on website
• You can also work with staff on it: 7:30-10:30pm on

both Tue 8/30 and Thu 9/1 in Upson B7
• Same material on both days

9

Academic Excellence Workshops

• Two-hour labs in which students work
together in cooperative setting

• One credit S/U course based on
attendance

• ENGRG 210, 745-791, Fridays, 2:30-4:25,
ACCEL

• See CS211 web site for more info

10

Course Work

• 6 assignments involving both programming and
written answers

• A.I. check each homework assignment
• Two prelims and final exam
• Course evaluation

11

Assignments
• Assignments may be done by teams of two

students (except A1)
• You can do them by yourself if you like
• Finding a partner: choose your own or contact

your TA
• Monogamy is strongly encouraged, polygamy is

strongly discouraged, and divorces are
permitted in case of irreconcilable differences

• See website course info and Code of Academic
Integrity

12

CS211 Objectives
• Concepts in modern programming languages:

– recursion, induction
– classes, objects
– inheritance, interfaces

• Efficiency of programs
• Data structures: arrays, lists, stacks, queues,

trees, hash tables, graphs
• Software engineering: How to organize large

programs
This is not a course on Java programming!

3

13

Lecture Sequence
• Introduction and Review
• Induction and Recursion
• Grammars and Parsing
• OOP Revisited
• Lists and Trees
• Inheritance and Interfaces
• Algorithm Analysis
• Asymptotic Complexity
• Searching and Sorting

14

More Lecture Topics

• Generic Programming
• Sequence Structures: stacks, queues,

heaps, priority queues
• Search Structures: binary search trees,

hashing
• Graphs

15

Some Examples

• CS211 lectures typically use these two
examples:
– 8-Puzzle Game
– SaM

• See links in Lecture Notes on website

16

Sam Loyd’s 8 Puzzle

Goal: Given an initial configuration of tiles, find a sequence of moves
that will lead to the sorted configuration.

A particular configuration is called a state of the puzzle.

17

State Transition Diagram of 8-Puzzle

State Transition Diagram: picture of adjacent states.
A state Y is adjacent to state X if Y can be reached from X in one move. 18

State Transition Diagram for a 2x2 Puzzle

4

19

Graphs

• State Transition Diagram in previous slide is an
example of a graph

• Graph has vertices (or nodes): in our example,
these are the puzzle states
– edges (or arcs): connections between pairs of

vertices
– vertices and edges may be annotated with some

information
• Other examples of graphs: airline routes,

roadmaps, . . .
20

Path Problems in Graphs

• Is there a path from node A to node B?
• What is the shortest path from A to B?
• Traveling salesman problem
• Hamiltonian cycles
• . . . will see later in semester

21

Simulating 8-puzzle

• What operations should puzzle objects
support?

• How do we represent configurations?
• How do we specify an initial configuration?
• What algorithm do we use to solve a given

initial configuration?
• What kind of GUI makes sense for

puzzles?
22

SaM

• SaM is a simple StAck Machine:
– Modeled roughly after the Java Virtual

Machine (JVM)
– Use it to understand how computers work at

the assembly language level (.class file level)
– Use it to understand how compilers work

• Download it from course homepage
• Used extensively in CS212

23

SaM’s Stack

Stack: an array of integers
• Stack grows when integer is "pushed" on top.
• Stack shrinks when integer is "popped" from top.
• Stack starts at address 0 and grows to larger addresses.

Stack pointer (SP):
• first "free" address in stack
• stores integer address
• initialized to 0

Note: For now, assume only
integers can be pushed on stack.
SaM actually allows floats,
characters, etc. to be pushed, and it
tracks type of data. GUI displays
type (I:integer,F:float,. . .), but
ignore this for now.

24

Some SaM Commands
• All arithmetic/logical operations pop values from stack, perform

operation, push result, and move SP to first free address
• Some commands:

PUSHIMM int
// push integer int onto top of stack

ADD
// pops two values from top of stack
// adds them and pushes result

SUB
// pops two values (say top and below)
// and pushes result of doing (below - top)

TIMES
// works like ADD

GREATER
// Boolean values are simulated using 0/1 (false/true)

AND
// logical AND

STOP
// terminate execution of program

5

25

Demonstrate SaM Commands

PUSHIMM 16

ADD:
• Pop 7
• Pop -2
• Determine 7 + (-2)
• Push result

26

Booleans and SaM

Booleans are simulated in SaM with integers:
• False → 0
• True → any int except 0 (usually 1)

GREATER:
- Pop two values (Vtop and Vbelow) from stack (V).
- So, Vtop = 7 and Vbelow = -2.
- If Vbelow > Vtop push 1; else push 0.
- In example, we would push 0.

27

SaM Programs
• Example 1:

PUSHIMM 5
PUSHIMM 4
PUSHIMM 3
PUSHIMM 2
TIMES
TIMES
TIMES
STOP // should leave 120 on top of stack

• Example 2:
PUSHIMM 5
PUSHIMM 4
GREATER
STOP //should leave 1 on top of stack

28

SaM Simulator

• What operations must SaM objects
support?

• How do we represent the internal state of
SaM?

• How do we load programs from a file?
• How do we write code to interpret each of

the opcodes?
• See “Chapter 1” in CS212 lecture notes

29

Why bother?
• By the end of CS211, you will be able to design

and write moderately large, well-structured
programs to simulate such systems.

• Why do we care about large, well-structured
programs written in modern languages such as
Java?

• Why are data structures such as trees and
graphs and algorithms (e.g., quicksort) and
theoretical issues (e.g., computational
complexity) so important?

30

Moore’s Law

From Lives and death of Moore’s Law, Ilkka Tuomi, 2002

6

31

Grandmother’s Law

• Brain takes about 0.1 second to recognize
your grandmother
– About 1 second to add two integers (e.g.

3+4=7)
– About 10 seconds to think/write statement of

code
• Your brain is not getting any faster!

32

Motivation
• Computers double in speed every 18 months

– Software doubles in size every M Years
– Data doubles in size every N Years
– Your brain never doubles in speed
– But we do get smarter, and can work in teams

• Computer science gets better:
– Better algorithms
– Better data structures
– Better programming languages
– Better understanding of what is (and is not) possible

