CS/ENGRD 211 Fall 2005

Lecture 1: Overview

http://www.cs.cornell.edu/courses/cs211/2005fa

Course Staff

• Instructors:

- Professor Paul Chew
- Professor David Schwartz
- Lead lectures and coordinate course
- Administrative Assistant:
 - Kelly Patwell
 - General administration
- Locations, office hours, contact info?
 See <u>Staff</u> on website

- Student Course Staff
- Teaching Assistants:
 - TAs lead recitation sections
 - TAs are your main contact point
- · Consultants:
 - In Upson 360, hours TBA online
 - "Front line" for answering questions
- More info?
 - See Staff on website

Lectures

2

- TR 10:10-11am, Olin 155
- Attendance is mandatory
- Lecture notes will be online—print them before class and bring them to class
- We will occasionally make small last minute changes to the notes, so don't print them too far in advance
- Readings will be posted online together with lecture notes

Sections												
ENGRD Course ID	COM S Course ID	Section	Day	Time	Place	Instructor(s)						
734-194	675-107	1	Т	12:20-1:10	HO 110	TBA						
734-285	675-194	2	Т	1:25-2:15	HO 206	TBA						
734-382	675-489	3	Т	2:30-3:20	HO 110	TBA						
734-449	675-490	4	W	12:20-1:10	HO 219	TBA						
734-551	675-549	5	W	1:25-2:15	BD 140	TBA						
734-580	675-574	6	W	2:30-3:20	UP B17	TBA						
734-643	675-746	7	Т	12:20-1:10	HO 401	TBA						
734-734	675-884	8	W	1:25-2:15	OH 165	TBA						

3

5

- Attendance is mandatory
- Usually review, help on homework
- Sometimes new material

CS212 • CS 212: Java Practicum • 1 credit project course • Substantial project • 1 lecture per week • Required for CS majors; recommended for others

• Take 211 and 212 in same semester?

1

Obtain Java

- We do not require an IDE
- We generally use Dr Java
- We do require Java 5
- See <u>Help & Software</u> under Java Resources on website

Java Help

- CS 211 assumes basic Java knowledge:
 - control structures
 - arrays, strings
 - classes (fields, methods, constructors)
- Need review?
 - Tutorials, links on website (Help & Software)

– Java Bootcamp:

- self-guided tutorial—material on website
- You can also work with staff on it: 7:30-10:30pm on
- both Tue 8/30 and Thu 9/1 in Upson B7
- Same material on both days

Academic Excellence Workshops

- Two-hour labs in which students work together in cooperative setting
- One credit S/U course based on attendance
- ENGRG 210, 745-791, Fridays, 2:30-4:25, <u>ACCEL</u>
- See CS211 web site for more info

Course Work

- 6 assignments involving both programming and written answers
- · A.I. check each homework assignment
- Two prelims and final exam
- Course evaluation

Assignments (44%)							Exams (55%)		
A1	A2	A3	A4	A5	A6	P1	P2	F	E
6	7	7	7	7	10	15	15	25	1

10

Assignments

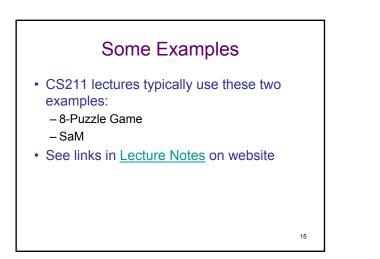
- Assignments may be done by teams of two students (except A1)
- You can do them by yourself if you like
- Finding a partner: choose your own or contact your TA
- Monogamy is strongly encouraged, polygamy is strongly discouraged, and divorces are permitted in case of irreconcilable differences
- See website course info and Code of Academic Integrity

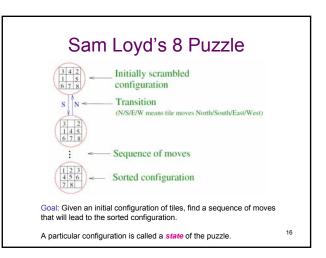
11

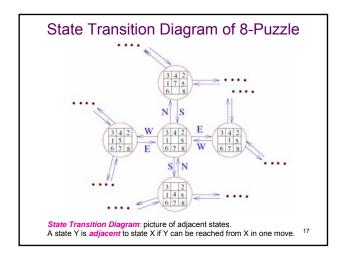
CS211 Objectives

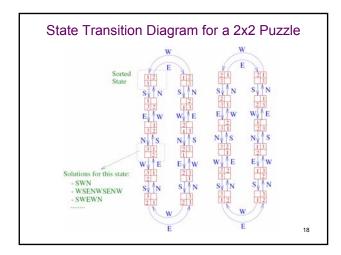
- Concepts in modern programming languages:
 - recursion, induction
 - classes, objects
 - inheritance, interfaces
- Efficiency of programs
- Data structures: arrays, lists, stacks, queues, trees, hash tables, graphs
- Software engineering: How to organize large programs
- This is not a course on Java programming!

Lecture Sequence


- Introduction and Review
- Induction and Recursion
- Grammars and Parsing
- OOP Revisited
- · Lists and Trees
- · Inheritance and Interfaces
- · Algorithm Analysis
- Asymptotic Complexity
- · Searching and Sorting


More Lecture Topics


- Generic Programming
- Sequence Structures: stacks, queues, heaps, priority queues
- Search Structures: binary search trees, hashing

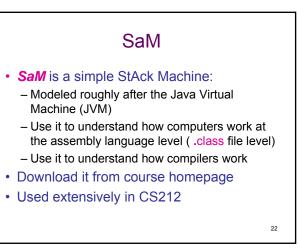

14

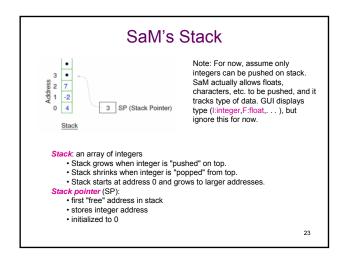
• Graphs

Graphs

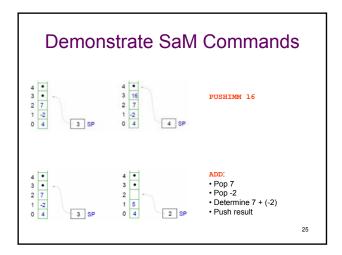
- State Transition Diagram in previous slide is an example of a *graph*
- Graph has vertices (or nodes): in our example, these are the puzzle states
 - edges (or arcs): connections between pairs of vertices
 - vertices and edges may be annotated with some information
- Other examples of graphs: airline routes, roadmaps, . . .

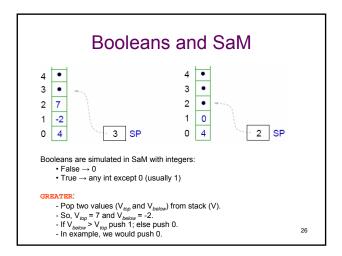
19

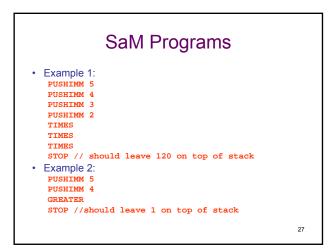

Path Problems in Graphs

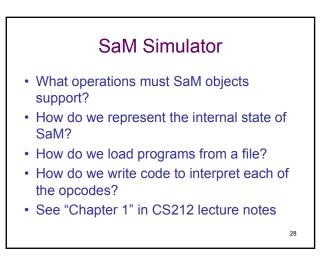

- Is there a path from node A to node B?
- What is the shortest path from A to B?
- Traveling salesman problem
- Hamiltonian cycles
- . . . will see later in semester

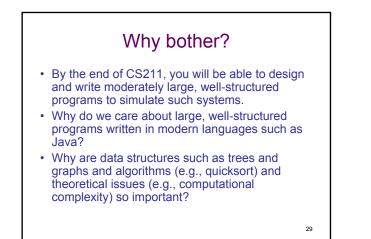
20

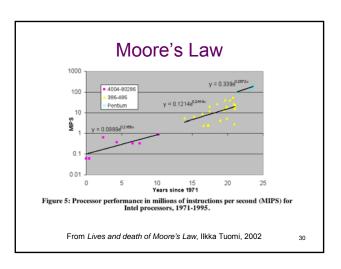

Simulating 8-puzzle


- What operations should puzzle objects support?
- How do we represent configurations?
- · How do we specify an initial configuration?
- What algorithm do we use to solve a given initial configuration?
- What kind of GUI makes sense for puzzles?









Grandmother's Law

- Brain takes about 0.1 second to recognize your grandmother
 - About 1 second to add two integers (e.g. 3+4=7)
 - About 10 seconds to think/write statement of code
- Your brain is not getting any faster!

31

Motivation

- · Computers double in speed every 18 months
 - Software doubles in size every M Years
 - Data doubles in size every N Years
 - Your brain never doubles in speed
 - But we do get smarter, and can work in teams
- Computer science gets better:
 - Better algorithms
 - Better data structures
 - Better programming languages
 - Better understanding of what is (and is not) possible