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CS/ENGRD 211
Fall 2005

Lecture 1: Overview
http://www.cs.cornell.edu/courses/cs211/2005fa
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Course Staff

• Instructors:
– Professor Paul Chew
– Professor David Schwartz
– Lead lectures and coordinate course

• Administrative Assistant:
– Kelly Patwell
– General administration

• Locations, office hours, contact info?
– See Staff on website
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Student Course Staff

• Teaching Assistants:
– TAs lead recitation sections
– TAs are your main contact point

• Consultants:
– In Upson 360, hours TBA online
– “Front line” for answering questions

• More info?
– See Staff on website
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Lectures

• TR 10:10-11am, Olin 155
• Attendance is mandatory
• Lecture notes will be online—print them 

before class and bring them to class
• We will occasionally make small last 

minute changes to the notes, so don’t print 
them too far in advance

• Readings will be posted online together 
with lecture notes
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Sections

• Attendance is mandatory
• Usually review, help on homework
• Sometimes new material 6

CS212

• CS 212: Java Practicum
• 1 credit project course
• Substantial project
• 1 lecture per week
• Required for CS majors; recommended for 

others
• Take 211 and 212 in same semester?
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Obtain Java

• We do not require an IDE
• We generally use Dr Java
• We do require Java 5
• See Help & Software under Java 

Resources on website
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Java Help
• CS 211 assumes basic Java knowledge: 

– control structures
– arrays, strings
– classes (fields, methods, constructors)

• Need review?
– Tutorials, links on website (Help & Software)
– Java Bootcamp: 

• self-guided tutorial—material on website
• You can also work with staff on it: 7:30-10:30pm on 

both Tue 8/30 and Thu 9/1 in Upson B7
• Same material on both days
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Academic Excellence Workshops

• Two-hour labs in which students work 
together in cooperative setting

• One credit S/U course based on 
attendance

• ENGRG 210, 745-791, Fridays, 2:30-4:25, 
ACCEL

• See CS211 web site for more info

10

Course Work

• 6 assignments involving both programming and 
written answers

• A.I. check each homework assignment
• Two prelims and final exam
• Course evaluation
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Assignments
• Assignments may be done by teams of two 

students (except A1)
• You can do them by yourself if you like
• Finding a partner: choose your own or contact 

your TA
• Monogamy is strongly encouraged, polygamy is 

strongly discouraged, and divorces are 
permitted in case of irreconcilable differences

• See website course info and Code of Academic 
Integrity
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CS211 Objectives
• Concepts in modern programming languages:

– recursion, induction
– classes, objects
– inheritance, interfaces

• Efficiency of programs
• Data structures: arrays, lists, stacks, queues, 

trees, hash tables, graphs
• Software engineering: How to organize large 

programs
This is not a course on Java programming!



3

13

Lecture Sequence
• Introduction and Review
• Induction and Recursion
• Grammars and Parsing
• OOP Revisited
• Lists and Trees
• Inheritance and Interfaces
• Algorithm Analysis
• Asymptotic Complexity
• Searching and Sorting
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More Lecture Topics

• Generic Programming
• Sequence Structures: stacks, queues, 

heaps, priority queues
• Search Structures: binary search trees, 

hashing
• Graphs
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Some Examples

• CS211 lectures typically use these two 
examples:
– 8-Puzzle Game
– SaM

• See links in Lecture Notes on website
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Sam Loyd’s 8 Puzzle

Goal: Given an initial configuration of tiles, find a sequence of moves 
that will lead to the sorted configuration. 

A particular configuration is called a state of the puzzle.
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State Transition Diagram of 8-Puzzle

State Transition Diagram: picture of adjacent states.
A state Y is adjacent to state X if Y can be reached from X in one move. 18

State Transition Diagram for a 2x2 Puzzle
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Graphs

• State Transition Diagram in previous slide is an 
example of a graph

• Graph has vertices (or nodes): in our example, 
these are the puzzle states
– edges (or arcs): connections between pairs of 

vertices
– vertices and edges may be annotated with some 

information
• Other examples of graphs: airline routes, 

roadmaps, . . .
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Path Problems in Graphs

• Is there a path from node A to node B?
• What is the shortest path from A to B?
• Traveling salesman problem
• Hamiltonian cycles
• . . . will see later in semester
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Simulating 8-puzzle

• What operations should puzzle objects 
support?

• How do we represent configurations?
• How do we specify an initial configuration?
• What algorithm do we use to solve a given 

initial configuration?
• What kind of GUI makes sense for 

puzzles?
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SaM

• SaM is a simple StAck Machine:
– Modeled roughly after the Java Virtual 

Machine (JVM)
– Use it to understand how computers work at 

the assembly language level ( .class file level)
– Use it to understand how compilers work

• Download it from course homepage
• Used extensively in CS212
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SaM’s Stack

Stack: an array of integers
• Stack grows when integer is "pushed" on top.
• Stack shrinks when integer is "popped" from top.
• Stack starts at address 0 and grows to larger addresses.

Stack pointer (SP): 
• first "free" address in stack
• stores integer address
• initialized to 0

Note: For now, assume only 
integers can be pushed on stack. 
SaM actually allows floats, 
characters, etc. to be pushed, and it 
tracks type of data. GUI displays 
type (I:integer,F:float,. . . ), but 
ignore this for now.
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Some SaM Commands
• All arithmetic/logical operations pop values from stack, perform

operation, push result, and move SP to first free address
• Some commands:

PUSHIMM int
// push integer int onto top of stack

ADD
// pops two values from top of stack
// adds them and pushes result

SUB
// pops two values (say top and below)
// and pushes result of doing (below - top)

TIMES
// works like ADD

GREATER
// Boolean values are simulated using 0/1 (false/true)

AND
// logical AND

STOP
// terminate execution of program
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Demonstrate SaM Commands

PUSHIMM 16

ADD:
• Pop 7
• Pop -2
• Determine 7 + (-2)
• Push result
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Booleans and SaM

Booleans are simulated in SaM with integers:
• False → 0
• True → any int except 0 (usually 1)

GREATER:
- Pop two values (Vtop and Vbelow) from stack (V).
- So, Vtop = 7 and Vbelow = -2.
- If Vbelow > Vtop push 1; else push 0.
- In example, we would push 0.
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SaM Programs
• Example 1:

PUSHIMM 5
PUSHIMM 4
PUSHIMM 3
PUSHIMM 2
TIMES
TIMES
TIMES
STOP // should leave 120 on top of stack

• Example 2:
PUSHIMM 5
PUSHIMM 4
GREATER
STOP //should leave 1 on top of stack
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SaM Simulator

• What operations must SaM objects 
support?

• How do we represent the internal state of 
SaM?

• How do we load programs from a file?
• How do we write code to interpret each of 

the opcodes?
• See “Chapter 1” in CS212 lecture notes
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Why bother?
• By the end of CS211, you will be able to design 

and write moderately large, well-structured 
programs to simulate such systems.

• Why do we care about large, well-structured 
programs written in modern languages such as 
Java?

• Why are data structures such as trees and 
graphs and algorithms (e.g., quicksort) and 
theoretical issues (e.g., computational 
complexity) so important?
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Moore’s Law

From Lives and death of Moore’s Law, Ilkka Tuomi, 2002
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Grandmother’s Law

• Brain takes about 0.1 second to recognize 
your grandmother
– About 1 second to add two integers (e.g. 

3+4=7)
– About 10 seconds to think/write statement of 

code
• Your brain is not getting any faster!
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Motivation
• Computers double in speed every 18 months

– Software doubles in size every M Years
– Data doubles in size every N Years
– Your brain never doubles in speed
– But we do get smarter, and can work in teams

• Computer science gets better:
– Better algorithms
– Better data structures
– Better programming languages
– Better understanding of what is (and is not) possible


