CS/ENGRD 211
Fall 2005

Lecture 1: Overview

http://www.cs.cornell.edu/courses/cs211/2005fa

Course Staff

* Instructors:
— Professor Paul Chew
— Professor David Schwartz
— Lead lectures and coordinate course
* Administrative Assistant:
— Kelly Patwell
— General administration
 Locations, office hours, contact info?
— See Staff on website

Student Course Staff

Teaching Assistants:

— TAs lead recitation sections

— TAs are your main contact point
Consultants:

—In Upson 360, hours TBA online
—“Front line” for answering questions
More info?

— See Staff on website

Lectures

TR 10:10-11am, Olin 155
Attendance is mandatory

 Lecture notes will be online—print them
before class and bring them to class

» We will occasionally make small last
minute changes to the notes, so don’t print
them too far in advance

» Readings will be posted online together
with lecture notes

Sections

ENGRD Com s
Course 1D | Course 1D

Ti4154 675-107
Ta4-285 675-104
Ta4-382 BT 5-450
Ta4-440 BT 5-450

Section|Day| Time |Place |Instructor(s)

12:20-1:10|HO 110 TBA
1:25-2:15 |HO 206 TBA
2:40-3:20 |[HO 110 TBA
12:20-1:10|HO 219 TBA

T34.551 675549 1:25.2:15 |BD 140 TBA

34580 675-574
Ti4a43 G75-76
T34734 675-824

2:30-3:30 |UP B17 TBA
12:20-1:10|HO 401 TBA
1:25-2:15 |OH 185 TEA

F|alFE[(EE]| A

» Attendance is mandatory
» Usually review, help on homework
* Sometimes new material

CS212

CS 212: Java Practicum
* 1 credit project course
Substantial project

1 lecture per week

* Required for CS majors; recommended for
others

Take 211 and 212 in same semester?

Obtain Java

* We do not require an IDE
* We generally use Dr Java
* We do require Java 5

See Help & Software under Java
Resources on website

Java Help

CS 211 assumes basic Java knowledge:
— control structures
— arrays, strings
— classes (fields, methods, constructors)
Need review?
— Tutorials, links on website (Help & Software)
—Java Bootcamp:
* self-guided tutorial—material on website

* You can also work with staff on it: 7:30-10:30pm on
both Tue 8/30 and Thu 9/1 in Upson B7

» Same material on both days

8

Academic Excellence Workshops

» Two-hour labs in which students work
together in cooperative setting

* One credit S/U course based on
attendance

* ENGRG 210, 745-791, Fridays, 2:30-4:25,
ACCEL

» See CS211 web site for more info

Course Work

* 6 assignments involving both programming and
written answers

» A.l. check each homework assignment
» Two prelims and final exam
» Course evaluation

Assignments Exams [Eval
{44%) (35%) | (1%)

Al1|AZ A3 (A4|AS|AG(P1|P2|F| E
67| 77710151525 1

Assignments

» Assignments may be done by teams of two
students (except A1)

* You can do them by yourself if you like

» Finding a partner: choose your own or contact
your TA

* Monogamy is strongly encouraged, polygamy is
strongly discouraged, and divorces are
permitted in case of irreconcilable differences

+ See website course info and Code of Academic
Integrity

CS211 Objectives

» Concepts in modern programming languages:
— recursion, induction
— classes, objects
— inheritance, interfaces

« Efficiency of programs

» Data structures: arrays, lists, stacks, queues,
trees, hash tables, graphs

« Software engineering: How to organize large
programs

This is not a course on Java programming!

Lecture Sequence

¢ Introduction and Review

* Induction and Recursion

+ Grammars and Parsing

* OOP Reuvisited

 Lists and Trees

* Inheritance and Interfaces
+ Algorithm Analysis

» Asymptotic Complexity

» Searching and Sorting

More Lecture Topics

Generic Programming

Sequence Structures: stacks, queues,
heaps, priority queues

Search Structures: binary search trees,
hashing

Graphs

Some Examples
» CS211 lectures typically use these two
examples:
— 8-Puzzle Game
- SaM
» See links in Lecture Notes on website

14
)
Sam Loyd’s 8 Puzzle
A Initially scrambled
[6]71%] configuration
S I_\.' - Transition
(NFSTE/W means tile moves Nonh/South/EastWest)
AT
[1]a]s]
16718
- Sequence of moves
1) < Sorted configuration
Goal: Given an initial configuration of tiles, find a sequence of moves
that will lead to the sorted configuration.
16

A particular configuration is called a state of the puzzle.

State Transition Diagram of 8-Puzzle

e
-
\
S ——
SR
"
%
ﬁ\ - L
A W E ANE
13 - | == 1Lis] A
6l7l8// E 71s)/ W \[&lz[g] A
A TA .tll.
S|TN
Y
r
DY 3T 121
[3]s] |2 - s
~[671%]
. ain

State Transition Diagram: picture of adjacent states.

A state Y is adjacent to state X if Y can be reached from X in one move. ”

State Transition Diagram for a 2x2 Puzzle

o w
I v E
Sored i Tp: 3l I}
iy [z in .
s¢IN S{IN SgIN Sy[N
: 1
i 1 a [}
ellw wl Ejlw wile
| 11 3
Nyls N{ls Ny[S Ny[S
; 3 il
b i i i
: wile Eylw WyIE EylW
Solutions for this state | 13l e 15
N T Tha 1 T s[4
WSENWSENW Sy IN S§N Sy [N HIN
SWEWN 1 o i3 i
A
W W

Graphs

State Transition Diagram in previous slide is an

example of a graph

Graph has vertices (or nodes): in our example,

these are the puzzle states

— edges (or arcs): connections between pairs of
vertices

— vertices and edges may be annotated with some
information

Other examples of graphs: airline routes,

roadmaps, . . .

Path Problems in Graphs

Is there a path from node A to node B?
What is the shortest path from A to B?
Traveling salesman problem
Hamiltonian cycles

. .. will see later in semester

20

Simulating 8-puzzle

What operations should puzzle objects
support?

How do we represent configurations?

How do we specify an initial configuration?

What algorithm do we use to solve a given
initial configuration?

What kind of GUI makes sense for
puzzles?

21

SaM

SaM is a simple StAck Machine:

— Modeled roughly after the Java Virtual
Machine (JVM)

— Use it to understand how computers work at
the assembly language level (.class file level)

— Use it to understand how compilers work
Download it from course homepage
Used extensively in CS212

22

SaM'’s Stack

Note: For now, assume only
integers can be pushed on stack.
SaM actually allows floats,
characters, etc. to be pushed, and it
tracks type of data. GUI displays
type (l:integer,F:float,. . .), but
ignore this for now.

Address
o o= oW
Blfa|™|ee

3 | 5P (Stack Pointer)

Stack

Stack: an array of integers

« Stack grows when integer is "pushed" on top.

« Stack shrinks when integer is "popped" from top.

« Stack starts at address 0 and grows to larger addresses.
Stack pointer (SP):

« first "free" address in stack

« stores integer address

« initialized to 0

23

Some SaM Commands

All arithmetic/logical operations pop values from stack, perform
operation, push result, and move SP to first free address
Some commands:
PUSHIMM int
/I push integer int onto top of stack
ADD
/I pops two values from top of stack
// adds them and pushes result
SUB
/I pops two values (say top and below)
/I and pushes result of doing (below - top)
TIMES
/I works like ADD
GREATER
// Boolean values are simulated using 0/1 (false/true)
AND
/I logical AND
OoP

/I terminate execution of program

24

O =M ows

o =M ows

Demonstrate SaM Commands

I - 4 .

. 3|18 PUSHIMM 16

T 2|7

-2 12

B [3]se ola [4]s=e
e o [ADD:

. 3| «Pop 7

7 2] * Pop -2

2 1[5 « Determine 7 + (-2)
4 5P o4 [z]er « Push result

25

Booleans and SaM

o = PN W B

\
RN, 4l o [2]er

Booleans are simulated in SaM with integers:
« False - 0
« True — any int except O (usually 1)

GREATER:
- Pop two values (V,,, and Vi) from stack (V).
- 80, Vi, = 7 @and Vi, = -2.
= If Vipeiow > Viop PUsh 1; else push 0.

- In example, we would push 0. %

SaM Programs

« Example 1:

PUSHIMM 5

PUSHIMM 4

PUSHIMM 3

PUSHIMM 2

TIMES

TIMES

TIMES

STOP // should leave 120 on top of stack
* Example 2:

PUSHIMM 5

PUSHIMM 4

GREATER

STOP //should leave 1 on top of stack

27

SaM Simulator

What operations must SaM objects
support?

How do we represent the internal state of
SaM?

How do we load programs from a file?

How do we write code to interpret each of
the opcodes?

See “Chapter 17 in CS212 lecture notes

28

Why bother?

» By the end of CS211, you will be able to design
and write moderately large, well-structured
programs to simulate such systems.

* Why do we care about large, well-structured
programs written in modern languages such as
Java?

» Why are data structures such as trees and
graphs and algorithms (e.g., quicksort) and
theoretical issues (e.g., computational
complexity) so important?

29

Moore’s Law

y = 033987
100 e
y = 0121483
10
H /’
-
CI =
0
L
om
0 5 10 15 20 25

Years since 1571

Figure 5: Processor performance in millions of instructions per second (MIPS) for
Intel processors, 1971-1995,

From Lives and death of Moore’s Law, llkka Tuomi, 2002 30

Grandmother’'s Law

* Brain takes about 0.1 second to recognize
your grandmother
— About 1 second to add two integers (e.g.
3+4=7)
— About 10 seconds to think/write statement of
code

* Your brain is not getting any faster!

Motivation

» Computers double in speed every 18 months
— Software doubles in size every M Years
— Data doubles in size every N Years
— Your brain never doubles in speed
— But we do get smarter, and can work in teams
» Computer science gets better:
— Better algorithms
— Better data structures
— Better programming languages
— Better understanding of what is (and is not) possible

32

