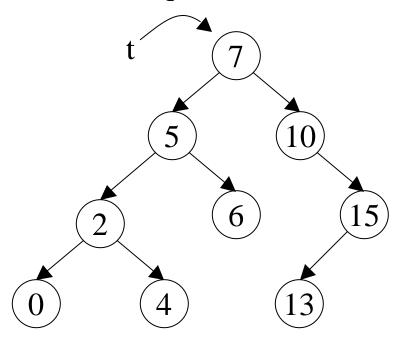
Order Statistics on Binary Trees

- Goal: find the k^{th} element (in order) of a binary tree where $1 \le k \le N$
- Why?
 - Find the median: k = n/2, or $k = \lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$
 - Find quartiles: k = n/4, n/2, 3n/4



 $t.size() \rightarrow 9$

t.elementAt(1) \rightarrow 0 // min

t.elementAt(3) \rightarrow 4 // 25%-ile

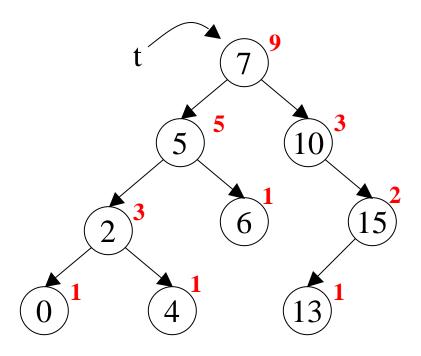
t.elementAt(5) \rightarrow 6 // median

t.elementAt(7) \rightarrow 10 // 75%-ile

t.elementAt(9) \rightarrow 15 // max

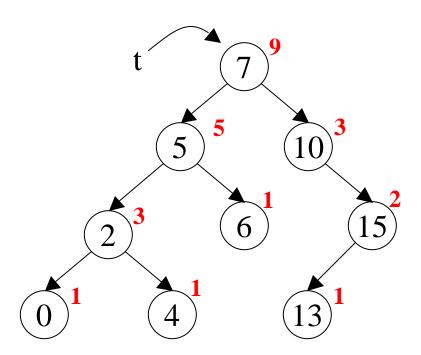
Maintaining Order Information

- Keep count tree sizes at each node
 - Update whenever tree is modified (easy)



Using Order Information

- Searching for *k*th element:
 - If k == left.size + 1, return data
 - If k < left.size + 1, search for k^{th} element in left subtree
 - If K > left.size + 1, search for (k-left.size-1)th element in right sub-tree



Structural Induction

- We saw induction on natural numbers:
 Proof that property P holds for all natural numbers n
 - base case: P(0)
 - inductive hypothesis: Suppose P(n) holds
 - inductive case: P(n + 1)
- Natural numbers have an inductive definition:
 - base case: 0 is a natural number
 - inductive case: if n is a natural number, so is n + 1
 - (and nothing else is a natural number, except those things created using these two rules)
- Coincidence?

Structural Induction

- We can generalize this to other *structures* that have an inductive definition
- E.g., a full binary tree can be defined as follows:
 - base case: make_tree(data) is a f-b-tree
 (consisting of one leaf node having given data)
 - inductive case: if left and right are f-b-trees, so is make_tree(left, right, data)
 - (consisting of one internal node having given data and given left and right subtrees)
 - (and nothing else is a f-b-tree except those things created using these two rules)
 - (in particular, can't have empty f-b-tree)
- How to do induction on these things?

Tree Induction

- Prove the following property for every f-b-tree
 P(t): # leaf nodes in t = # internal nodes in t + 1
- Base case: P(make_tree(data))

• Inductive Hypothesis: Suppose P(*left*) and P(*right*) hold

• Inductive Case: P(make_tree(left, right, data))

Structural Induction

- Now we can prove (inductively) properties about all sorts of (inductively defined) things:
 - Natural Numbers, Rational Numbers, Real Numbers
 - Trees, BSTs, Linked Lists, Doubly-linked lists, etc.
 - Expressions (e.g. E : integer | E + E)
 - Java programs, methods, classes, etc.
- Ain't induction grand?