
Interfaces
& Sub-types

Weiss sec. 4.4

Scenario
• Instructor says:

“Implement a class IntegerMath with two
methods pow and fact with the following signatures:

public static int power(int a, int b);
public static int factorial(int n);

that compute …”

Scenario
• Instructor says:

“Implement a class IntegerMath with two
methods pow and fact with the following signatures:

static int power(int a, int b);
static int fact(int n);

that compute …”
• Result:

– Student asks “Did you mean pow or power?”
– Student turns in:

public class IntigerMath {
public static double pow(double a, int n) { …}
public static int factorial(int x) { …}

}
– Student’s code compiles fine, but Grader’s test program

won’t compile!

Software Engineering
• How to write a large program (say, 1 million lines):

– Find a smart & productive person:
• 1000 lines/day x 365 days/year x 2.7 years = 1 million lines

– Split program into many small units:
• Each unit assigned to one person or team
• Each unit has a specification

– defines what it is supposed to do (and maybe how)

• Each unit has an interface
– defines “what it looks like” from the outside

• Assigned person/team writes implementation
– must follow specification
– must implement the interface

• Then someone puts it all together
– hope it all works!

Example 2: Collections
• Specification:

– Want a class that stores a collection of objects
– It should have methods for adding/removing objects,

finding objects, etc.
• Interface:

– The objects should be referred to as Collection instances
– Methods have these signatures:

public void add(Object e);
public void remove(Object e);

• Implementation:
– Farmed out to student(s)
– Create class, copy signatures, fill in bodies, add helper

methods if needed, add static/instance variables if needed,
etc.

Compiler
• What can the compiler do to help?
• Implementation satisfies specification?

– Can’t be checked by compiler (yet)

• Implementation satisfied interface?
– Can be checked by compiler:
– Just compare method signatures in implementation against

those in the interface definition

Multiple Implementations
• Why?

– Lots of students

• Why, in the real world?
– Competing groups
– Easy to compare different implementations – just plug a

new implementation into the program, see how it works
– implementation evolves/improves over time

• Multiple implementations, one interface: How?
– Give interface a name: interface Collection
– Give each implementation a different name:

class MSCllctn implements Collection // Microsoft
class AppleBag implements Collection // Apple
class GnuLinux implements Collection // FSF

Interfaces in Java
• Elements:

– interface name + method signatures + constants
– other classes will implement the methods

• Caveats:
– all instance methods implicitly “public” and non-static
– all instance fields implicitly “public static final”
– no static methods allowed
– no non-final or non-static fields allowed
– can’t instantiate directly (b/c it has no body!)

• Why no static methods?
– Java interfaces are concerned with interface to an object,

not to a “bag-of-methods” style class

Collections: One Scenario
• Your boss says:

“We need a collection that can do the following:
– add a new object to the collection
– remove a given object from the collection
– etc.

and I don’t care how you implement it”
• Someone OKs the following interface with the boss:

public interface Collection {
void add(Object e);
void remove(Object e);
boolean contains(Object e);
void clear();
// ...

}

Collections: One Scenario
• You are given interface (& specification too)

• You write:

public interface Collection {
void add(Object e);
void remove(Object e);
boolean contains(Object e);
void clear();
// ...

}

public class LinkedList implements Collection {
private ListCell head; // the list contents

public void clear() { … }
public void add(Object e) { … }
public void remove(Object e) { … }
public boolean contains(Object e) { … }

// and constructors
// and helpers: insertHead, search(), getHead(), …

}

Multiple Interfaces
• Scenario: Your class can do more than just fulfill the

Collection interface.
– e.g., can also be reversed, saved on disk, etc.

class LinkedList implements Container, Reversible, Comparable, Storable { … }

– Just need to implement all of the required methods

Generic Programming
• Software engineering: specify interface à create a

class that implements it
• Generic programming: create lots of similar classes
à specify an interface that works with all of them

• Why?
– Lets us write “generic code”

Example: Print a Linked List

// print a LinkedList
public static void printAll(LinkedList t) {

for (int i = 0; i < t.size(); i++) {
Object e = t.get(i);
System.out.println(i+" : "+e);

}
}

Example: Print other Collections

// print a LinkedList
public static void printAll(LinkedList t) {
for (int i = 0; i < t.size(); i++) {
Object e = t.get(i);
System.out.println(i+" : "+e);

}
}

// print an ArrayList
public static void printAll(ArrayList t) {
for (int i = 0; i < t.size(); i++) {
Object e = t.get(i);
System.out.println(i+" : "+e);

}
}

// print a Doubly-linked list
public static void printAll(DLinkedList t) {
for (int i = 0; i < t.size(); i++) {
Object e = t.get(i);
System.out.println(i+" : "+e);

}
}

// print a Tree
public static void printAll(Tree t) {
for (int i = 0; i < t.size(); i++) {
Object e = t.get(i);
System.out.println(i+" : "+e);

}
}

Ideal: Generic “printAll”

// print anything that implements Collection interface
public static void printAll(Collection t) {
for (int i = 0; i < t.size(); i++) {
Object e = t.get(i);
System.out.println(i+" : "+e);

}
}

• All we need is a certain kind of object t
– Must have a method called size() returning int
– Must have a method called get(int i) returning Object
– Anything that implements collection has these

Interfaces as Types

• Name of interface can be used as a variable type:
– e.g., Collection t1; Collection t2

• Visualize relationship as a hierarchy (tree?)

Collection

LinkedList DLinkedList Tree sub-types

super-type

Multiple Interfaces

• Name of interface can be used as a variable type:
– e.g., Collection t1; Collection t2;

• A class can have many super-types
• An interface can have many sub-types

Collection

LinkedList DLinkedList Tree sub-types

Reversible Storable super-type

Super-Interfaces

interface Traversable extends Collection, Ordered
{

Object[] traverseForward();
Object[] traverseBackward();

}

BiDirectional

LinkedList DLinkedList Tree

Reversible Storable

Collection Serializable

Randomly-
Accessible

interface RandomlyAccessible extends
Collection {

Object getRandomElement();
}

Ordered

interface Ordered {
boolean comesBefore(Object o);
boolean comesAfter(Object o)

}

Integer

class DLinkedList implements
Reversible, BiDirectional {

…
}

Types, but no instantiation
• Can’t instantiate an interface directly:

– Reversible r = new Reversible(…); // no such constructor
– There is no “body” (implementation) for Reversible itself

• So what can we do with “Reversible s”?
– Call methods defined in interface Reversible:

• e.g we can reverse it using s.reverse();

– But nothing else
• no constructors in interface

• So why bother having a variable “Reversible r”?
– How do we get an instance of Reversible?
– Want to do: Reversible s = new LinkedList(…);

Type Checking: Assignments
• x = y; // is this okay?
• Without sub-typing, it is easy:

– String s = new Integer(3); // illegal: String != Integer
– Rule: LHS type must be same as RHS type

• With sub-typing, it is complicated:
– LinkedList p = new LinkedList(…); // okay: LHS=RHS
– Reversible r = p; // okay: RHS is LinkedList, which implements Reversible
– Tree t = r; // not okay: RHS is Reversible, which may not be a Tree

• Think about “is a” relation versus “may be a”:
– a LinkedList object “is a” Collection (upward in heir.)
– a Collection object “may be a” Tree (downward in heir.)

Apparent vs. Actual Types
• Apparent type: what the variable declaration said

– Reversible r; ß says that r will be a Reversible object

• Actual type: what ended up getting assigned
– r = new LinkedList(); ß r is now a LinkedList object

• Why bother?
Reversible r = new LinkedList(…);
…
LinkedList t = r; // is this okay?

• Apparent type: can tell by looking at declaration
• Actual type: have to trace through code at run-time

Static Type Checking
• Java does static type checking. In other words:

– All assignments checked when you compile program
– If assignment always okay, then type check passes
– If assignment might not be okay, then type check fails
– Uses apparent types of variables

• Some other languages to dynamic type checking. I.e:
– All assignments checked when you run your program
– If assignment is okay, then type check passes
– If assignment is not okay, then type check fails
– Uses actual types of variables

• Tradeoffs:
– dynamic is slow, error-prone, but “quick-and-dirty”
– static is zero-cost, identifies potential bugs, but sometimes

inconvenient (e.g., reports “type check fails” too often)

Up-Casting

• Going from sub-type to super-type
• Apparent type of RHS is sub-type of apparent type

of LHS
• Always okay; Type check passes
• Compiler can check this easily – look at declarations
• e.g. Tree t = …; // apparent type Tree

Collection c = …; // apparent type Collection
…
c = t; // always okay; so passes

Collection

LinkedList DLinkedList Tree

super-type

sub-types

Down-Casting

• Going from super-type to sub-type
• Apparent type of RHS is super-type of apparent type

of LHS
• Sometimes okay; Type check fails
• Compiler can check this easily – look at declarations
• e.g. Tree t = …; // apparent type Tree

Collection c = …; // apparent type Collection
…
c = t; // always okay; so passes

Collection

LinkedList DLinkedList Tree

super-type

sub-types

Up-Casting to Generic Code
interface Container {

Object get(int i);
int size();

}

class LinkedList implements Container {
... get(int i) ... size() ... reverse() ...

}

class Tree implements Container {
... getRoot() ... size() ... get(int i) ...

}

Up-Casting to Generic Code
class ThirdParty {

void main(String []args) {
LinkedList p = …
Tree t = …
printAll(p);
printAll(t);

}
}

public static void printAll(Collection c) {
for (int i = 0; i < c.size(); i++) {

Object e = c.get(i);
System.out.println(i+" : "+e);

}
}

• Question: which size method is called from within
printAll() ?

Dynamic Binding
• Answer: Depends on the actual type of the object.

– use size() from Tree? Sometimes
– use size() from LinkedList? Sometimes
– use size() from Container? No such thing

• How can compiler tell which?
– main() : try to look at variable declarations – might work
– printAll() : variable declaration does not help

Dynamic Binding
program area

stack

heap

LinkedList: ..get()..size()..reverse() Tree: ..getRoot()..size()..get()

Tree t
LinkedList p m

ain

LinkedList
head
get()
size()

reverse()

Tree
root
get()
size()

getRoot()

In this example, main() sees both objects as they
actually are

Dynamic Binding
program area

stack

heap

LinkedList: ..get()..size()..reverse() Tree: ..getRoot()..size()..get()

Tree t
LinkedList p m

ain

LinkedList
head
get()
size()

reverse()

Tree
root
get()
size()

getRoot()
Container c

pA

printAll sees only Container methods
During execution: follow reference from c, find

method you want, follow reference to find code

Summary
• Interfaces have two main uses:

– Software Engineering:
• Good fences make good neighbors

– Sub-typing:
• Interface is super-type; implementation is sub-type
• Use to write more “generic” code

• Sub-typing:
– Think: “is-a” relationship
– Several ways to do this in Java (interfaces are one way)
– Up-casting: LHS is super-type of RHS – always okay
– Down-casting: LHS is sub-type of RHS – not always okay

• Dynamic binding: code to run is found at run-time
• Static type checking: compiler checks all

assignments

