| nterfaces
& Sub-types

Weisssec. 4.4



Scenario
e |nstructor says.
“Implement a class IntegerMath with two
methods pow and fact with the following signatures:
public static int power(int a, int b);
public static int factorial (int n);
that compute ...”



Scenario

e Instructor says.
“Implement a class IntegerMath with two

methods pow and fact with the following signatures:
static int power(int a, int b);
static int fact(int n);

that compute ...”

e Result:
— Student asks “Did you mean pow or power?’
— Student turnsin:
public class IntigerMath {

public static double pow(double a, intn) { ...}
public static int factoria(int x) { ...}

}

— Student’ s code compiles fine, but Grader’ s test program
won’t compile!



Software Engineering
 How to write alarge program (say, 1 million lines):

— Find asmart & productive person:
» 1000 lines/day x 365 days/year x 2.7 years= 1 million lines
— Split program into many small units:
» Each unit assigned to one person or team
 Each unit has a specification
— defineswhat it is supposed to do (and maybe how)

e Each unit has an interface
— defines “what it looks like” from the outside

» Assigned person/team writes implementation
— must follow specification
— must implement the interface

» Then someone puts it al together
— hopeit all works!




Example 2. Collections
o Specification:
— Want aclass that stores a collection of objects
— It should have methods for adding/removing objects,
finding objects, etc.
e |nterface:
— The objects should be referred to as Collection instances

— Methods have these signatures:
public void add(Object e);
public void remove(Object e);
e |mplementation:
— Farmed out to student(s)

— Create class, copy signatures, fill in bodies, add helper
methods iIf needed, add static/instance variables if needed,
elc.



Compiler
* What can the compiler do to help?
* |mplementation satisfies specification?
— Can't be checked by compiler (yet)
e |mplementation satisfied interface?

— Can be checked by compiler:

— Just compare method signatures in implementation against
those in the interface definition



Multiple Implementations
« Why?
— Lots of students

 Why, in the real world?
— Competing groups

— Easy to compare different implementations — just plug a
new implementation into the program, see how it works

— Implementation evolves/improves over time

e Multiple implementations, one interface: How?
— Give interface a name: interface Collection

— Give each implementation a different name:
class MSCllctn implements Collection // Microsoft
class AppleBag implements Collection // Apple
class GnuLinux implements Collection // FSF




Interfaces in Java
e Elements:
— Interface name + method signatures + constants
— other classes will implement the methods

e Cavedls:
— al instance methods implicitly “public” and non-static
— all instance fields implicitly “public static final”
— no static methods allowed
— no non-final or non-static fields allowed
— can’t instantiate directly (b/c it has no body!)

e Why no static methods?

— Javainterfaces are concerned with interface to an object,
not to a “bag-of-methods’ style class



Collections; One Scenario

Y our boss says.
“We need a collection that can do the following:

— add anew object to the collection
— remove a given object from the collection
— €lc.

and | don’t care how you implement it”
Someone OK s the following interface with the boss:

public interface Collection {
void add(Object e);
void remove(Object e);
boolean contains(Object e);
void clear();
I ...




Collections: One Scenario
* You are given interface (& specification too)

public interface Collection {
void add(Object e);
void remove(Object e);
boolean contains(Object e);
void clear();
/...

}

* Youwrite: _ _ — .
public class LinkedList implements Collection {

private ListCell head; // thelist contents

publicvoidclear() { ... }

public void add(Objecte) { ... }

public void remove(Objecte) { ... }
public boolean contains(Object e) { ... }

/I and constructors

/I and helpers: insertHead, search(), getHead(), ...




Multiple Interfaces
e Scenario: Your class can do more than just fulfill the
Collection interface.

— e.g., can also be reversed, saved on disk, etc.
class LinkedList implements Container, Reversible, Comparable, Sorable{ ... }

— Just need to implement all of the required methods



Generic Programming
» Software engineering: specify interface - create a
class that implements it

o Generic programming: create lots of ssmilar classes
-> specify an interface that works with all of them
« Why?
— Lets uswrite “generic code”



Example: Print aLinked List

// print aLinkedList
public static void printAll(LinkedList t) {
for (inti =0; 1 <tsize); i++){
Object e = t.get(i);
System.out.printin(i+" : "+e);
}
}




Example: Print other Collections

// print a LinkedList
public static void printAll(LinkedList t) {
for (inti =0; i <t.size(); i++) {
Object e = t.get(i);
System.out.printin(i+" : "+e);
}
}

// print a Doubly-linked list
public static void printAll(DLinkedList t) {
for (inti =0; i <t.size(); i++) {
Object e = t.get(i);
System.out.printin(i+" : "+e);
}
}

I/ print an ArrayList
public static void printAll(ArrayList t) {
for (inti =0; i <t.size(); i++) {
Object e = t.get(i);
System.out.printin(i+" : "+e);
}
}

/Il print aTree
public static void printAll(Treet) {
for (inti =0; i <t.size(); i++) {
Object e = t.get(i);
System.out.printin(i+" : "+e);
}
}




|deal: Generic “printAll”

I/ print anything that implements Collection interface
public static void printAll(Collection t) {
for (int1 =0; 1 <t.size(); 1++) {
Object e = t.get(i);
System.out.printin(i+" : "+e);

}

}

* All we need isacertain kind of object t
— Must have a method called size( ) returning int
— Must have a method called get(int i) returning Object
— Anything that implements collection has these



Interfaces as Types

er-wpe

 Name of interface can be used as a variable type:
— e.g., Collection t1; Collection t2

e Visualizerelationship as ahierarchy (tree?)



Multiple Interfaces

Reversible orable super-type
T

LinkedList DLinkedList

 Name of interface can be used as a variable type:
— e.g., Collection t1; Collection t2;

A class can have many super-types
* An interface can have many sub-types

i

sub-types



Super-Interfaces

DLinkedList

Randomly-
Accessible

interface Ordered {
boolean comesBefore(Object 0);
boolean comesAfter(Object 0)

}

Interface Traversable extends Collection, Ordered

{

Object[] traverseForward();
Object[] traverseBackward();

}

Interface RandomlyAccessible extends | | class DLinkedList implements

Collection{
Object getRandomElement();

}

Reversible, BiDirectional {

}




Types, but no Instantiation
e Can't instantiate an interface directly:
— Reversibler = new Reversible(...); // no such constructor
— Thereisno “body” (implementation) for Reversible itself

S0 what can we do with “Reversible s’ ?

— Call methods defined in interface Reversible:
e egwecanreverseit using s.reverse();

— But nothing else
* NO constructors in interface

e So why bother having avariable “Reversible r’?
— How do we get an instance of Reversible?
— Want to do: Reversible s= new LinkedList(...);



Type Checking: Assignments
X =Y; // isthis okay?
Without sub-typing, It Is easy:
— String s = new Integer(3); // illegal: String != Integer
— Rule: LHS type must be same as RHS type
With sub-typing, it is complicated:
— LinkedList p=new LinkedList(...); // okay: LHS=RHS

— Reversibler = p; // okay: RHS is LinkedList, which implements Reversible
— Treet=r; /[ not okay: RHS is Reversible, which may not be a Tree

Think about “isa’ relation versus “may be a’:
— alLinkedList object “isa’ Collection (upward in heir.)
— aCollection object “may be &’ Tree (downward in heir.)



Apparent vs. Actual Types
Apparent type: what the variable declaration said
— Reversibler; < saysthat r will be a Reversible object

Actual type: what ended up getting assigned
— r=new LinkedList(); < r isnow aLinkedList object

Why bother?
Reversibler = new LinkedList(...);

LinkedListt =r; // isthis okay?
Apparent type: can tell by looking at declaration
Actual type: have to trace through code at run-time



Static Type Checking
 Java does static type checking. In other words:
— All assignments checked when you compile program
— If assignment always okay, then type check passes
— |f assignment might not be okay, then type check fails
— Uses apparent types of variables

e Some other languages to dynamic type checking. |.e:
— All assignments checked when you run your program
— If assignment is okay, then type check passes
— If assignment is not okay, then type check fails
— Uses actual types of variables

* Tradeoffs:
— dynamic is slow, error-prone, but “quick-and-dirty”

— gtatic is zero-cost, identifies potential bugs, but sometimes
Inconvenient (e.g., reports “type check fails’ too often)



Up-Casting

(Collection) ~ super-type

Going from sub-type to super-type

Apparent type of RHS is sub-type of apparent type
of LHS

Always okay; Type check passes
Compiler can check this easily — look at declarations

e.g. Treet=...;// apparent type Tree
Collectionc = ...; // apparent type Collection

(.:“: t; // always okay; so passes



Down-Casting

(Collection) ~ super-type

Going from super-type to sub-type

Apparent type of RHS is super-type of apparent type
of LHS

Sometimes okay; Type check fails
Compiler can check this easily — look at declarations

e.g. Treet=...;// apparent type Tree
Collectionc = ...; // apparent type Collection

(.:“: t; // always okay; so passes



Up-Casting to Generic Code

Interface Container {
Object get(int i),
Int size();

}

class LinkedList implements Container {

.. get(inti) ... 9z&() ... reverse() ...
}

class Tree implements Container {
... getRoot() ... size() ... get(int 1) ...

}




Up-Casting to Generic Code

class ThirdParty {
void main(String [Jargs) { public static void printAll(Collection c) {
LinkedListp=... for (inti =0; 1 <c.sze); i++) {
Treet=... Object e = c.get(i);
printAll(p); System.out.printin(i+" : "+e);
printAll(t); }
} }
}

e Question: which size method is called from within
printAll() ?



Dynamic Binding
o Answer: Depends on the actual type of the object.
— use size() from Tree? Sometimes
— use size() from LinkedList? Sometimes
— use size() from Container? No such thing

e How can compiler tell which?
— main( ) : try to look at variable declarations — might work
— printAll() : variable declaration does not help



Dynamic Binding

_ program area

LinkedList: ..get()..size()..reverse() | | Tree: ..getRoot()..size()..get()

*steck = Tt

\ \
> Link Dsm Tree \

ed
heed N J/|| \ root \
get() S| [ Sget()
Slze( ) // Sl%ﬁ\
reverse() | / getRoot( )

/|

LinkedList p 5|
Q.
Treet >

. heap

In this example, main( ) sees both objects as they
actually are



Dynamic Binding

_ program area

LinkedList: ..get()..size()..reverse() | | Tree: ..getRoot()..size()..get()

_ stack

LinkedList p
Treet

Container c 57
3
D
-

— -

W~ \

/ N \
get() |/ get()  \

size() [ size() |-

. heap

printAll sees on

y Container methods

During execution: follow reference from c, find
method you want, follow reference to find code



Summary

|nterfaces have two main uses:
— Software Engineering:

 (Good fences make good neighbors
— Sub-typing:

 Interface is super-type; implementation is sub-type

« Useto write more “generic” code
Sub-typing:
— Think: “isa’ relationship
— Severa waysto do thisin Java (interfaces are one way)
— Up-casting: LHS is super-type of RHS — always okay
— Down-casting: LHS is sub-type of RHS — not always okay
Dynamic binding: code to run isfound at run-time

Static type checking: compiler checks all
assignments



